949 research outputs found

    Artefact reduction in photoplethysmography

    Get PDF
    The use of optical techniques in biomedical monitoring and diagnosis is becoming increasingly widespread, primarily because of the non-invasive nature of optically derived measurements. Physiological analysis is usually achieved by characterisation of the spectral or temporal properties of the interaction between light and the anatomy. Although some optical measurements require complex instrumentation and protocols, recent technological advances have resulted in robust and compact equipment that is now used routinely in a multitude of clinical contexts. Unfortunately, these measurements are inherently sensitive to corruption from dynamic physical conditions or external sources of light, inducing signal artefact. Artefact is the primary restriction in the applicability of many optical measurements, especially for ambulatory monitoring and tele-medicine. The most widely used optical measurement is photoplethysmography, a technique that registers dynamic changes in blood volume throughout the peripheral vasculature and can be used to screen for a number of venous disorders, as well as monitoring the cardio-vascular pulse wave. Although photoplethysmographic devices are now incorporated into many patient-monitoring systems, the prevalent application is a measurement known as pulse oximetry, which utilises spectral analysis of the peripheral blood to estimate the arterial haernoglobin oxygen saturation. Pulse oximetry is well established as an early warning for hypoxia and is now mandatory under anaesthesia in many countries. The problem of artefact is prominent in these continuous monitoring techniques, where it is often impossible to control the physical conditions during use. This thesis investigates the possibility of reducing artefact corruption of photoplethysmographic signals in real time, using an electronic processing methodology that is based upon inversion of a physical artefact model. The consequences of this non-linear artefact reduction technique for subsequent signal analysis are discussed, culminating in a modified formulation for pulse oximetry that not only has reduced sensitivity to artefact but also possesses increased generality. The design and construction of a practical electronic system is then used to explore both the implementation issues and the scope of this technique. The performance of artefact reduction obtained is then quantified under realistic experimental conditions, demonstrating that this methodology is successful in removing or reducing a large proportion of artefact encountered in clinically relevant situations. It is concluded that non-linear artefact reduction can be applied to any photoplethysmographic technology, reducing interpretation inaccuracies that would otherwise be induced by signal artefact. It is also speculated that this technology could enable the use of photoplethysmographic systems in applications that are currently precluded by the inherent severity of artefact

    Design, analysis and evaluation of sigma-delta based beamformers for medical ultrasound imaging applications

    Get PDF
    The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of modulators topologies, is intended to accelerate the design process and evaluation of modulators. This design tool is further developed to enable the design, analysis and evaluation of beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort

    CMOS SPAD-based image sensor for single photon counting and time of flight imaging

    Get PDF
    The facility to capture the arrival of a single photon, is the fundamental limit to the detection of quantised electromagnetic radiation. An image sensor capable of capturing a picture with this ultimate optical and temporal precision is the pinnacle of photo-sensing. The creation of high spatial resolution, single photon sensitive, and time-resolved image sensors in complementary metal oxide semiconductor (CMOS) technology offers numerous benefits in a wide field of applications. These CMOS devices will be suitable to replace high sensitivity charge-coupled device (CCD) technology (electron-multiplied or electron bombarded) with significantly lower cost and comparable performance in low light or high speed scenarios. For example, with temporal resolution in the order of nano and picoseconds, detailed three-dimensional (3D) pictures can be formed by measuring the time of flight (TOF) of a light pulse. High frame rate imaging of single photons can yield new capabilities in super-resolution microscopy. Also, the imaging of quantum effects such as the entanglement of photons may be realised. The goal of this research project is the development of such an image sensor by exploiting single photon avalanche diodes (SPAD) in advanced imaging-specific 130nm front side illuminated (FSI) CMOS technology. SPADs have three key combined advantages over other imaging technologies: single photon sensitivity, picosecond temporal resolution and the facility to be integrated in standard CMOS technology. Analogue techniques are employed to create an efficient and compact imager that is scalable to mega-pixel arrays. A SPAD-based image sensor is described with 320 by 240 pixels at a pitch of 8ÎŒm and an optical efficiency or fill-factor of 26.8%. Each pixel comprises a SPAD with a hybrid analogue counting and memory circuit that makes novel use of a low-power charge transfer amplifier. Global shutter single photon counting images are captured. These exhibit photon shot noise limited statistics with unprecedented low input-referred noise at an equivalent of 0.06 electrons. The CMOS image sensor (CIS) trends of shrinking pixels, increasing array sizes, decreasing read noise, fast readout and oversampled image formation are projected towards the formation of binary single photon imagers or quanta image sensors (QIS). In a binary digital image capture mode, the image sensor offers a look-ahead to the properties and performance of future QISs with 20,000 binary frames per second readout with a bit error rate of 1.7 x 10-3. The bit density, or cumulative binary intensity, against exposure performance of this image sensor is in the shape of the famous Hurter and Driffield densitometry curves of photographic film. Oversampled time-gated binary image capture is demonstrated, capturing 3D TOF images with 3.8cm precision in a 60cm range

    Computational structures for application specific VLSI processors

    Get PDF

    Timing Signals and Radio Frequency Distribution Using Ethernet Networks for High Energy Physics Applications

    Get PDF
    Timing networks are used around the world in various applications from telecommunications systems to industrial processes, and from radio astronomy to high energy physics. Most timing networks are implemented using proprietary technologies at high operation and maintenance costs. This thesis presents a novel timing network capable of distributed timing with subnanosecond accuracy. The network, developed at CERN and codenamed “White- Rabbit”, uses a non-dedicated Ethernet link to distribute timing and data packets without infringing the sub-nanosecond timing accuracy required for high energy physics applications. The first part of this thesis proposes a new digital circuit capable of measuring time differences between two digital clock signals with sub-picosecond time resolution. The proposed digital circuit measures and compensates for the phase variations between the transmitted and received network clocks required to achieve the sub-nanosecond timing accuracy. Circuit design, implementation and performance verification are reported. The second part of this thesis investigates and proposes a new method to distribute radio frequency (RF) signals over Ethernet networks. The main goal of existing distributed RF schemes, such as Radio-Over-Fibre or Digitised Radio-Over-Fibre, is to increase the bandwidth capacity taking advantage of the higher performance of digital optical links. These schemes tend to employ dedicated and costly technologies, deemed unnecessary for applications with lower bandwidth requirements. This work proposes the distribution of RF signals over the “White-Rabbit” network, to convey phase and frequency information from a reference base node to a large numbers of remote nodes, thus achieving high performance and cost reduction of the timing network. Hence, this thesis reports the design and implementation of a new distributed RF system architecture; analysed and tested using a purpose-built simulation environment, with results used to optimise a new bespoke FPGA implementation. The performance is evaluated through phase-noise spectra, the Allan-Variance, and signalto- noise ratio measurements of the distributed signals

    Dirty RF Signal Processing for Mitigation of Receiver Front-end Non-linearity

    Get PDF
    ï»żModerne drahtlose Kommunikationssysteme stellen hohe und teilweise gegensĂ€tzliche Anforderungen an die Hardware der Funkmodule, wie z.B. niedriger Energieverbrauch, große Bandbreite und hohe LinearitĂ€t. Die GewĂ€hrleistung einer ausreichenden LinearitĂ€t ist, neben anderen analogen Parametern, eine Herausforderung im praktischen Design der Funkmodule. Der Fokus der Dissertation liegt auf breitbandigen HF-Frontends fĂŒr Software-konfigurierbare Funkmodule, die seit einigen Jahren kommerziell verfĂŒgbar sind. Die praktischen Herausforderungen und Grenzen solcher flexiblen Funkmodule offenbaren sich vor allem im realen Experiment. Eines der Hauptprobleme ist die Sicherstellung einer ausreichenden analogen Performanz ĂŒber einen weiten Frequenzbereich. Aus einer Vielzahl an analogen Störeffekten behandelt die Arbeit die Analyse und Minderung von NichtlinearitĂ€ten in EmpfĂ€ngern mit direkt-umsetzender Architektur. Im Vordergrund stehen dabei Signalverarbeitungsstrategien zur Minderung nichtlinear verursachter Interferenz - ein Algorithmus, der besser unter "Dirty RF"-Techniken bekannt ist. Ein digitales Verfahren nach der VorwĂ€rtskopplung wird durch intensive Simulationen, Messungen und Implementierung in realer Hardware verifiziert. Um die LĂŒcken zwischen Theorie und praktischer Anwendbarkeit zu schließen und das Verfahren in reale Funkmodule zu integrieren, werden verschiedene Untersuchungen durchgefĂŒhrt. Hierzu wird ein erweitertes Verhaltensmodell entwickelt, das die Struktur direkt-umsetzender EmpfĂ€nger am besten nachbildet und damit alle Verzerrungen im HF- und Basisband erfasst. DarĂŒber hinaus wird die LeistungsfĂ€higkeit des Algorithmus unter realen Funkkanal-Bedingungen untersucht. ZusĂ€tzlich folgt die Vorstellung einer ressourceneffizienten Echtzeit-Implementierung des Verfahrens auf einem FPGA. Abschließend diskutiert die Arbeit verschiedene Anwendungsfelder, darunter spektrales Sensing, robuster GSM-Empfang und GSM-basiertes Passivradar. Es wird gezeigt, dass nichtlineare Verzerrungen erfolgreich in der digitalen DomĂ€ne gemindert werden können, wodurch die Bitfehlerrate gestörter modulierter Signale sinkt und der Anteil nichtlinear verursachter Interferenz minimiert wird. Schließlich kann durch das Verfahren die effektive LinearitĂ€t des HF-Frontends stark erhöht werden. Damit wird der zuverlĂ€ssige Betrieb eines einfachen Funkmoduls unter dem Einfluss der EmpfĂ€ngernichtlinearitĂ€t möglich. Aufgrund des flexiblen Designs ist der Algorithmus fĂŒr breitbandige EmpfĂ€nger universal einsetzbar und ist nicht auf Software-konfigurierbare Funkmodule beschrĂ€nkt.Today's wireless communication systems place high requirements on the radio's hardware that are largely mutually exclusive, such as low power consumption, wide bandwidth, and high linearity. Achieving a sufficient linearity, among other analogue characteristics, is a challenging issue in practical transceiver design. The focus of this thesis is on wideband receiver RF front-ends for software defined radio technology, which became commercially available in the recent years. Practical challenges and limitations are being revealed in real-world experiments with these radios. One of the main problems is to ensure a sufficient RF performance of the front-end over a wide bandwidth. The thesis covers the analysis and mitigation of receiver non-linearity of typical direct-conversion receiver architectures, among other RF impairments. The main focus is on DSP-based algorithms for mitigating non-linearly induced interference, an approach also known as "Dirty RF" signal processing techniques. The conceived digital feedforward mitigation algorithm is verified through extensive simulations, RF measurements, and implementation in real hardware. Various studies are carried out that bridge the gap between theory and practical applicability of this approach, especially with the aim of integrating that technique into real devices. To this end, an advanced baseband behavioural model is developed that matches to direct-conversion receiver architectures as close as possible, and thus considers all generated distortions at RF and baseband. In addition, the algorithm's performance is verified under challenging fading conditions. Moreover, the thesis presents a resource-efficient real-time implementation of the proposed solution on an FPGA. Finally, different use cases are covered in the thesis that includes spectrum monitoring or sensing, GSM downlink reception, and GSM-based passive radar. It is shown that non-linear distortions can be successfully mitigated at system level in the digital domain, thereby decreasing the bit error rate of distorted modulated signals and reducing the amount of non-linearly induced interference. Finally, the effective linearity of the front-end is increased substantially. Thus, the proper operation of a low-cost radio under presence of receiver non-linearity is possible. Due to the flexible design, the algorithm is generally applicable for wideband receivers and is not restricted to software defined radios

    Removing non-stationary noise in spectrum sensing using matrix factorization

    Get PDF
    Spectrum sensing is key to many applications like dynamicspectrum access (DSA) systems or telecom regulators who need to measure utilization of frequency bands. The International Telecommunication Union (ITU) recommends a 10 dB threshold above the noise to decide whether a channel is occupied or not. However, radio frequency (RF) receiver front-ends are non-ideal. This means that the obtained data is distorted with noise and imperfections from the analog front-end. As part of the front-end the automatic gain control (AGC) circuitry mainly affects the sensing performance as strong adjacent signals lift the noise level. To enhance the performance of spectrum sensing significantly we focus in this article on techniques to remove the noise caused by the AGC from the sensing data. In order to do this we have applied matrix factorization techniques, i.e., SVD (singular value decomposition) and NMF (non-negative matrix factorization), which enables signal space analysis. In addition, we use live measurement results to verify the performance and to remove the effects of the AGC from the sensing data using above mentioned techniques, i.e., applied on block-wise available spectrum data. In this article it is shown that the occupancy in the industrial, scientific and medical (ISM) band, obtained by using energy detection (ITU recommended threshold), can be an overestimation of spectrum usage by 60%

    The design of micro-processors for digital protection of power systems

    Get PDF
    Imperial Users onl

    Parallel-sampling ADC architecture for power-efficient broadband multi-carrier systems

    Get PDF
    • 

    corecore