1,345 research outputs found

    Sparsity-Aware Low-Power ADC Architecture with Advanced Reconstruction Algorithms

    Get PDF
    Compressive sensing (CS) technique enables a universal sub-Nyquist sampling of sparse and compressible signals, while still guaranteeing the reliable signal recovery. Its potential lies in the reduced analog-to-digital conversion rate in sampling broadband and/or multi-channel sparse signals, where conventional Nyquist-rate sampling are either technology impossible or extremely hardware costly. Nevertheless, there are many challenges in the CS hardware design. In coherent sampling, state-of-the-art mixed-signal CS front-ends, such as random demodulator and modulated wideband converter, suffer from high power and nonlinear hardware. In signal recovery, state-of-the-art CS reconstruction methods have tractable computational complexity and probabilistically guaranteed performance. However, they are still high cost (basis pursuit) or noise sensitive (matching pursuit). In this dissertation, we propose an asynchronous compressive sensing (ACS) front-end and advanced signal reconstruction algorithms to address these challenges. The ACS front-end consists of a continuous-time ternary encoding (CT-TE) scheme which converts signal amplitude variations into high-rate ternary timing signal, and a digital random sampler (DRS) which captures the ternary timing signal at sub-Nyquist rate. The CT-TE employs asynchronous sampling mechanism for pulsed-like input and has signal-dependent conversion rate. The DRS has low power, ease of massive integration, and excellent linearity in comparison to state-of-the-art mixed-signal CS front-ends. We propose two reconstruction algorithms. One is group-based total variation, which exploits piecewise-constant characteristics and achieves better mean squared error and faster convergence rate than the conventional TV scheme with moderate noise. The second algorithm is split-projection least squares (SPLS), which relies on a series of low-complexity and independent l2-norm problems with the prior on ternary-valued signal. The SPLS scheme has good noise robustness, low-cost signal reconstruction and facilitates a parallel hardware for real-time signal recovery. In application study, we propose multi-channel filter banks ACS front-end for the interference-robust radar. The proposed receiver performs reliable target detection with nearly 8-fold data compression than Nyquist-rate sampling in the presence of -50dBm wireless interference. We also propose an asynchronous compressed beamformer (ACB) for low-power portable diagnostic ultrasound. The proposed ACB achieves 9-fold data volume compression and only 4.4% contrast-to-noise ratio loss on the imaging results when compared with the Nyquist-rate ADCs

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Self-powered Time-Keeping and Time-of-Occurrence Sensing

    Get PDF
    Self-powered and passive Internet-of-Things (IoT) devices (e.g. RFID tags, financial assets, wireless sensors and surface-mount devices) have been widely deployed in our everyday and industrial applications. While diverse functionalities have been implemented in passive systems, the lack of a reference clock limits the design space of such devices used for applications such as time-stamping sensing, recording and dynamic authentication. Self-powered time-keeping in passive systems has been challenging because they do not have access to continuous power sources. While energy transducers can harvest power from ambient environment, the intermittent power cannot support continuous operation for reference clocks. The thesis of this dissertation is to implement self-powered time-keeping devices on standard CMOS processes. In this dissertation, a novel device that combines the physics of quantum tunneling and floating-gate (FG) structures is proposed for self-powered time-keeping in CMOS process. The proposed device is based on thermally assisted Fowler-Nordheim (FN) tunneling process across high-quality oxide layer to discharge the floating-gate node, therefore resulting in a time-dependent FG potential. The device was fully characterized in this dissertation, and it does not require external powering during runtime, making it feasible for passive devices and systems. Dynamic signature based on the synchronization and desynchronization behavior of the FN timer is proposed for authentication of IoT devices. The self-compensating physics ensure that when distributed timers are subjected to identical environment variances that are common-mode noise, they can maintain synchronization with respect to each other. On the contrary, different environment conditions will desynchronize the timers creating unique signatures. The signatures could be used to differentiate between products that belong to different supply-chains or products that were subjected to malicious tampering. SecureID type dynamic authentication protocols based on the signature generated by the FN timers are proposed and they are proven to be robust to most attacks. The protocols are further analyzed to be lightweight enough for passive devices whose computational sources are limited. The device could also be applied for self-powered sensing of time-of-occurrence. The prototype was verified by integrating the device with a self-powered mechanical sensor to sense and record time-of-occurrence of mechanical events. The system-on-chip design uses the timer output to modulate a linear injector to stamp the time information into the sensing results. Time-of-occurrence can be reconstructed by training the mathematical model and then applying that to the test data. The design was verified to have a high reconstruction accuracy

    Fifty Years of Noise Modeling and Mitigation in Power-Line Communications.

    Get PDF
    Building on the ubiquity of electric power infrastructure, power line communications (PLC) has been successfully used in diverse application scenarios, including the smart grid and in-home broadband communications systems as well as industrial and home automation. However, the power line channel exhibits deleterious properties, one of which is its hostile noise environment. This article aims for providing a review of noise modeling and mitigation techniques in PLC. Specifically, a comprehensive review of representative noise models developed over the past fifty years is presented, including both the empirical models based on measurement campaigns and simplified mathematical models. Following this, we provide an extensive survey of the suite of noise mitigation schemes, categorizing them into mitigation at the transmitter as well as parametric and non-parametric techniques employed at the receiver. Furthermore, since the accuracy of channel estimation in PLC is affected by noise, we review the literature of joint noise mitigation and channel estimation solutions. Finally, a number of directions are outlined for future research on both noise modeling and mitigation in PLC

    Sparsity Independent Sub-Nyquist Rate Wideband Spectrum Sensing on Real-Time TV White Space

    Get PDF

    Integrated circuits for wearable systems based on flexible electronics

    Get PDF
    corecore