2,193 research outputs found

    Robust Spatial-spread Deep Neural Image Watermarking

    Full text link
    Watermarking is an operation of embedding an information into an image in a way that allows to identify ownership of the image despite applying some distortions on it. In this paper, we presented a novel end-to-end solution for embedding and recovering the watermark in the digital image using convolutional neural networks. The method is based on spreading the message over the spatial domain of the image, hence reducing the "local bits per pixel" capacity. To obtain the model we used adversarial training and applied noiser layers between the encoder and the decoder. Moreover, we broadened the spectrum of typically considered attacks on the watermark and by grouping the attacks according to their scope, we achieved high general robustness, most notably against JPEG compression, Gaussian blurring, subsampling or resizing. To help us in the models training we also proposed a precise differentiable approximation of JPEG.Comment: The article was accepted on TrustCom 2020: The 19th IEEE International Conference on Trust, Security and Privacy in Computing and Communication

    HiDDeN: Hiding Data With Deep Networks

    Full text link
    Recent work has shown that deep neural networks are highly sensitive to tiny perturbations of input images, giving rise to adversarial examples. Though this property is usually considered a weakness of learned models, we explore whether it can be beneficial. We find that neural networks can learn to use invisible perturbations to encode a rich amount of useful information. In fact, one can exploit this capability for the task of data hiding. We jointly train encoder and decoder networks, where given an input message and cover image, the encoder produces a visually indistinguishable encoded image, from which the decoder can recover the original message. We show that these encodings are competitive with existing data hiding algorithms, and further that they can be made robust to noise: our models learn to reconstruct hidden information in an encoded image despite the presence of Gaussian blurring, pixel-wise dropout, cropping, and JPEG compression. Even though JPEG is non-differentiable, we show that a robust model can be trained using differentiable approximations. Finally, we demonstrate that adversarial training improves the visual quality of encoded images

    Robust Watermarking of Neural Network with Exponential Weighting

    Full text link
    Deep learning has been achieving top performance in many tasks. Since training of a deep learning model requires a great deal of cost, we need to treat neural network models as valuable intellectual properties. One concern in such a situation is that some malicious user might redistribute the model or provide a prediction service using the model without permission. One promising solution is digital watermarking, to embed a mechanism into the model so that the owner of the model can verify the ownership of the model externally. In this study, we present a novel attack method against watermark, query modification, and demonstrate that all of the existing watermark methods are vulnerable to either of query modification or existing attack method (model modification). To overcome this vulnerability, we present a novel watermarking method, exponential weighting. We experimentally show that our watermarking method achieves high verification performance of watermark even under a malicious attempt of unauthorized service providers, such as model modification and query modification, without sacrificing the predictive performance of the neural network model.Comment: 13 page

    Digital Passport: A Novel Technological Strategy for Intellectual Property Protection of Convolutional Neural Networks

    Full text link
    In order to prevent deep neural networks from being infringed by unauthorized parties, we propose a generic solution which embeds a designated digital passport into a network, and subsequently, either paralyzes the network functionalities for unauthorized usages or maintain its functionalities in the presence of a verified passport. Such a desired network behavior is successfully demonstrated in a number of implementation schemes, which provide reliable, preventive and timely protections against tens of thousands of fake-passport deceptions. Extensive experiments also show that the deep neural network performance under unauthorized usages deteriorate significantly (e.g. with 33% to 82% reductions of CIFAR10 classification accuracies), while networks endorsed with valid passports remain intact.Comment: This paper proposes a new timely IPR solution that embed digital passports into CNN models to prevent the unauthorized network usage (i.e. infringement) by paralyzing the networks while maintaining its functionality for verified user

    BlackMarks: Blackbox Multibit Watermarking for Deep Neural Networks

    Full text link
    Deep Neural Networks have created a paradigm shift in our ability to comprehend raw data in various important fields ranging from computer vision and natural language processing to intelligence warfare and healthcare. While DNNs are increasingly deployed either in a white-box setting where the model internal is publicly known, or a black-box setting where only the model outputs are known, a practical concern is protecting the models against Intellectual Property (IP) infringement. We propose BlackMarks, the first end-to-end multi-bit watermarking framework that is applicable in the black-box scenario. BlackMarks takes the pre-trained unmarked model and the owner's binary signature as inputs and outputs the corresponding marked model with a set of watermark keys. To do so, BlackMarks first designs a model-dependent encoding scheme that maps all possible classes in the task to bit '0' and bit '1' by clustering the output activations into two groups. Given the owner's watermark signature (a binary string), a set of key image and label pairs are designed using targeted adversarial attacks. The watermark (WM) is then embedded in the prediction behavior of the target DNN by fine-tuning the model with generated WM key set. To extract the WM, the remote model is queried by the WM key images and the owner's signature is decoded from the corresponding predictions according to the designed encoding scheme. We perform a comprehensive evaluation of BlackMarks's performance on MNIST, CIFAR10, ImageNet datasets and corroborate its effectiveness and robustness. BlackMarks preserves the functionality of the original DNN and incurs negligible WM embedding runtime overhead as low as 2.054%

    Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring

    Full text link
    Deep Neural Networks have recently gained lots of success after enabling several breakthroughs in notoriously challenging problems. Training these networks is computationally expensive and requires vast amounts of training data. Selling such pre-trained models can, therefore, be a lucrative business model. Unfortunately, once the models are sold they can be easily copied and redistributed. To avoid this, a tracking mechanism to identify models as the intellectual property of a particular vendor is necessary. In this work, we present an approach for watermarking Deep Neural Networks in a black-box way. Our scheme works for general classification tasks and can easily be combined with current learning algorithms. We show experimentally that such a watermark has no noticeable impact on the primary task that the model is designed for and evaluate the robustness of our proposal against a multitude of practical attacks. Moreover, we provide a theoretical analysis, relating our approach to previous work on backdooring

    Watermark retrieval from 3D printed objects via synthetic data training

    Full text link
    We present a deep neural network based method for the retrieval of watermarks from images of 3D printed objects. To deal with the variability of all possible 3D printing and image acquisition settings we train the network with synthetic data. The main simulator parameters such as texture, illumination and camera position are dynamically randomized in non-realistic ways, forcing the neural network to learn the intrinsic features of the 3D printed watermarks. At the end of the pipeline, the watermark, in the form of a two-dimensional bit array, is retrieved through a series of simple image processing and statistical operations applied on the confidence map generated by the neural network. The results demonstrate that the inclusion of synthetic DR data in the training set increases the generalization power of the network, which performs better on images from previously unseen 3D printed objects. We conclude that in our application domain of information retrieval from 3D printed objects, where access to the exact CAD files of the printed objects can be assumed, one can use inexpensive synthetic data to enhance neural network training, reducing the need for the labour intensive process of creating large amounts of hand labelled real data or the need to generate photorealistic synthetic data

    Watermark Retrieval from 3D Printed Objects via Convolutional Neural Networks

    Full text link
    We present a method for reading digital data embedded in planar 3D printed surfaces. The data are organised in binary arrays and embedded as surface textures in a way inspired by QR codes. At the core of the retrieval method lies a Convolutional Neural Network, outputting a confidence map of the location of the surface textures encoding value 1 bits. Subsequently, the bit array is retrieved through a series of simple image processing and statistical operations applied on the confidence map. Extensive experimentation with images captured from various camera views, under various illumination conditions and from objects printed with various material colours, shows that the proposed method generalizes well and achieves the level of accuracy required in practical applications

    BlessMark: A Blind Diagnostically-Lossless Watermarking Framework for Medical Applications Based on Deep Neural Networks

    Full text link
    Nowadays, with the development of public network usage, medical information is transmitted throughout the hospitals. The watermarking system can help for the confidentiality of medical information distributed over the internet. In medical images, regions-of-interest (ROI) contain diagnostic information. The watermark should be embedded only into non-regions-of-interest (NROI) to keep diagnostic information without distortion. Recently, ROI based watermarking has attracted the attention of the medical research community. The ROI map can be used as an embedding key for improving confidentiality protection purposes. However, in most existing works, the ROI map that is used for the embedding process must be sent as side-information along with the watermarked image. This side information is a disadvantage and makes the extraction process non-blind. Also, most existing algorithms do not recover NROI of the original cover image after the extraction of the watermark. In this paper, we propose a framework for blind diagnostically-lossless watermarking, which iteratively embeds only into NROI. The significance of the proposed framework is in satisfying the confidentiality of the patient information through a blind watermarking system, while it preserves diagnostic/medical information of the image throughout the watermarking process. A deep neural network is used to recognize the ROI map in the embedding, extraction, and recovery processes. In the extraction process, the same ROI map of the embedding process is recognized without requiring any additional information. Hence, the watermark is blindly extracted from the NROI.Comment: Drs. Soroushmehr and Najarian declared that they had not contributions to the paper. I removed their name

    The Robust Digital Image Watermarking using Quantization and Fuzzy Logic Approach in DWT Domain

    Full text link
    In this paper a novel approach to embed watermark into the host image using quantization with the help of Dynamic Fuzzy Inference System (DFIS) is proposed. The cover image is decomposed up to 3- levels using quantization and Discrete Wavelet Transform (DWT). A bitmap of size 64x64 pixels is embedded into the host image using DFIS rule base. The DFIS is utilized to generate the watermark weighting function to embed the imperceptible watermark. The implemented watermarking algorithm is imperceptible and robust to some normal attacks such as JPEG Compression, salt&pepper noise, median filtering, rotation and cropping. Keywords: Watermark, Quantization, Dynamic Fuzzy Inference System, Imperceptible, Robust, JPEG Compression, Cropping.Comment: 7 pages, 11 figures, IJCSN Journa
    • …
    corecore