321 research outputs found

    Image Watermarking in the Linear Canonical Transform Domain

    Get PDF
    The linear canonical transform, which can be looked at the generalization of the fractional Fourier transform and the Fourier transform, has received much interest and proved to be one of the most powerful tools in fractional signal processing community. A novel watermarking method associated with the linear canonical transform is proposed in this paper. Firstly, the watermark embedding and detecting techniques are proposed and discussed based on the discrete linear canonical transform. Then the Lena image has been used to test this watermarking technique. The simulation results demonstrate that the proposed schemes are robust to several signal processing methods, including addition of Gaussian noise and resizing. Furthermore, the sensitivity of the single and double parameters of the linear canonical transform is also discussed, and the results show that the watermark cannot be detected when the parameters of the linear canonical transform used in the detection are not all the same as the parameters used in the embedding progress

    Digital Watermarking using Multiscale Ridgelet Transform

    Get PDF
    The multi-resolution watermarking method for digital images proposed in this work. The multiscale ridgelet coefficients of low and high frequency bands of the watermark is embedded to the most significant coefficients at low and high frequency bands of the multiscale ridgelet of an host image, respectively. A multi-resolution nature of multiscale ridgelet transform is exploiting in the process of edge detection. Experimental results of the proposed watermarking method are compared with the previously available watermarking algorithm wavelet transform. Moreover, the proposed watermarking method also tested on images attached by Discrete Cosine Transform (DCT) and wavelet based lossy image compression techniques

    A Review on Encryption and Decryption of Image using Canonical Transforms & Scrambling Technique

    Get PDF
    Data security is a prime objective of various researchers & organizations. Because we have to send the data from one end to another end so it is very much important for the sender that the information will reach to the authorized receiver & with minimum loss in the original data. Data security is required in various fields like banking, defence, medical etc. So our objective here is that how to secure the data. So for this purpose we have to use encryption schemes. Encryption is basically used to secure the data or information which we have to transmit or to store. Various methods for the encryption are provided by various researchers. Some of the methods are based on the random keys & some are based on the scrambling scheme. Chaotic map, logistic map, Fourier transform & Fractional Fourier transform etc. are widely used for the encryption process. Now day’s image encryption method is very popular for the encryption scheme. The information is encrypted in the form of image. The encryption is done in a format so no one can read that image. Only the person who are authenticated or have authentication keys can only read that data or information. So this work is based on the same fundamental concept. Here we use Linear Canonical Transform for the encryption process

    Robust Digital Video Watermarking using Reversible Data Hiding and Visual Cryptography

    Get PDF
    Watermarking is a major image processing application used to authenticate user documents by embedding and hiding some authenticated piece of information behind an image, audio or the video file. For example, copyright symbols or signatures are often used. Our proposed work is to develop and implement an improved layered approach to video watermarking. The traditional watermarking approach tends to embed an entire watermark image within each video frame or within random video frames to give the appearance of a hidden watermark to the casual observer. This work proposes a more efficient and secure approach to perform watermarking, by using sub image classification. That is to say, selected frames only will contain a fractional number of pixels from the watermark image. We take k bits from the watermark and store then within a video frame, depending on the size of that watermark image. Our algorithm is capable of hiding high capacity information over video frames. The novel approach is to partially distribute the watermarking data over a set of frames until the entire watermark is eventually distributed throughout the entire video. The originality our technique is that it is a histogram inspired and reversible watermarking approach as defined with visual cryptography. Our approach hides similar watermarking pixels with frames of a similar appearance. Differing sets of watermark pixels are thus embedded within dissimilar frames, thus making the system more robust. It will provide a high degree of authentication, as the extraction of information from a single frame only will not reveal the entire watermarking data, or even give any obvious indication that it contains a fraction of the watermark pixels. The resilience of our technique will be tested by performing various systematic attacks upon a series of videos watermarked in this manner
    • …
    corecore