58 research outputs found

    Towards Optimal Copyright Protection Using Neural Networks Based Digital Image Watermarking

    Get PDF
    In the field of digital watermarking, digital image watermarking for copyright protection has attracted a lot of attention in the research community. Digital watermarking contains varies techniques for protecting the digital content. Among all those techniques,Discrete Wavelet Transform (DWT) provides higher image imperceptibility and robustness. Over the years, researchers have been designing watermarking techniques with robustness in mind, in order for the watermark to be resistant against any image processing techniques. Furthermore, the requirements of a good watermarking technique includes a tradeoff between robustness, image quality (imperceptibility) and capacity. In this paper, we have done an extensive literature review for the existing DWT techniques and those combined with other techniques such as Neural Networks. In addition to that, we have discuss the contribution of Neural Networks in copyright protection. Finally we reached our goal in which we identified the research gaps existed in the current watermarking schemes. So that, it will be easily to obtain an optimal techniques to make the watermark object robust to attacks while maintaining the imperceptibility to enhance the copyright protection

    A New Method For Digital Watermarking Based on Combination of DCT and PCA

    Full text link
    In the digital watermarking with DCT method,the watermark is located within a range of DCT coefficients of the cover image. In this paper to use the low-frequency band, a new method is proposed by using a combination of the DCT and PCA transform. The proposed method is compared to other DCT methods, our method is robust and keeps the quality of cover image, also increases capacity of the watermarking.Comment: Telecommunications Forum Telfor (TELFOR), 2014 22n

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Development Of A Robust Blind Digital Video Watermarking Algorithm Using Discrete Wavelet Transform

    Get PDF
    Video watermarking technology enables us to hide an imperceptible, robust, and secure data in digital or analog video. This data can be used for tracking, fingerprinting, copyright infringement detection or any other application that requires some hidden data. Video watermarking can be achieved by either applying still image technologies to each frame of the movie or by using dedicated methods which exploit inherent features of the video sequence. There is a complex trade-off between three requirements in digital watermarking: robustness against noise and attacks, imperceptibility or invisibility, and capacity, which represent the amount of data, i.e., the number of bits encoded by the watermark. However, these three requirements conflict with each other. Increasing the watermark strength makes the system more robust but unfortunately decreases the perceptual quality. Whereas, increasing the capacity of the watermark decreases the robustness.In the production chain, video compression is usually applied before broadcasting or before transferring the video to other devices. In order to be robust against format conversions, the watermark has to be inserted before compression. Therefore, uncompressed video format has been used in the research undertaken. On the other hand, a random key is used to choose the frames to be watermarked to increase the security level of the algorithm and discourage piracy. The aim of this research is to develop a video watermarking algorithm to embed a binary image inside the uncoded video stream that acts as a logo. A mid-band discrete wavelet transform coefficients of the selected frames are chosen to be the hosted region in the frequency domain. An inverse transformation should be taken in order to get the desired watermarked video shot. In extraction process the watermark is extracted from the marked video directly without access to the original video. The experiment results showed that the proposed scheme provides better quality watermarked videos in term of watermark invisibility to human eyes. Results also indicated that obtaining average peak signal to noise ratio (PSNR) equals 41.59dB as compared with 38.48dB in the case of direct embedding. In addition, the scheme is robust against video processing operations, such as MPEG compression which could be successfully recovered. In conclusion, modifying the wavelet coefficients depending only on the logo object's pixels highly improve the invisibility and at the same time providing a good robustness level

    Watermarking digital image and video data. A state-of-the-art overview

    Full text link

    A study and some experimental work of digital image and video watermarking

    Get PDF
    The rapid growth of digitized media and the emergence of digital networks have created a pressing need for copyright protection and anonymous communications schemes. Digital watermarking (or data hiding in a more general term) is a kind of steganography technique by adding information into a digital data stream. Several most important watermarking schemes applied to multilevel and binary still images and digital videos were studied. They include schemes based on DCT (Discrete Cosine Transform), DWT (Discrete Wavelet Transform), and fractal transforms. The question whether these invisible watermarking techniques can resolve the issue of rightful ownership of intellectual properties was discussed. The watermarking schemes were further studied from malicious attack point of view, which is considered an effective way to advance the watermarking techniques. In particular, the StirMark robustness tests based on geometrical distortion were carried out. A binary watermarking scheme applied in the DCT domain is presented in this research project. The effect of the binarization procedure necessarily encountered in dealing with binary document images is found so strong that most of conventional embedding schemes fail in dealing with watermarking of binary document images. Some particular measures have to be taken. The initial simulation results indicate that the proposed technique is promising though further efforts need to be made

    Implementation of Transform Based Techniques in Digital Image Watermarking

    Get PDF
    Digital image watermarking is used to resolve the problems of data security and copyright protection. In many applications of digital watermarking, watermarked image of good quality are required. But here is a trade-off between number of embedded watermark images and quality of watermarked images. This aspect is quite important in case of multiple digital image watermarking. This project presents a robust digital image watermarking using discrete cosine transform (DCT) method. Compression on a watermarked image can significantly affect the detection of the embedded watermark. The detection of the presence or absence of a watermarked in an image is often affected if the watermarked image has undergone compression. Compression can also be considered as an attack on watermarked images. To show that a particular watermarking scheme is robust against compression, simulation is often relied DOI: 10.17762/ijritcc2321-8169.15084

    Hiding data in images using steganography techniques with compression algorithms

    Get PDF
    Steganography is the science and art of secret communication between two sides that attempt to hide the content of the message. It is the science of embedding information into the cover image without causing a loss in the cover image after embedding.Steganography is the art and technology of writing hidden messages in such a manner that no person, apart from the sender and supposed recipient, suspects the lifestyles of the message. It is gaining huge attention these days as it does now not attract attention to its information's existence. In this paper, a comparison of two different techniques is given. The first technique used Least Significant Bit (LSB) with no encryption and no compression. In the second technique, the secret message is encrypted first then LSB technique is applied. Moreover, Discrete Cosine Transform (DCT) is used to transform the image into the frequency domain. The LSB algorithm is implemented in spatial domain in which the payload bits are inserted into the least significant bits of cover image to develop the stego-image while DCT algorithm is implemented in frequency domain in which the stego-image is transformed from spatial domain to the frequency domain and the payload bits are inserted into the frequency components of the cover image.The performance of these two techniques is evaluated on the basis of the parameters MSE and PSNR

    Haar-Wavelet-Based Just Noticeable Distortion Model for Transparent Watermark

    Get PDF
    Watermark transparency is required mainly for copyright protection. Based on the characteristics of human visual system, the just noticeable distortion (JND) can be used to verify the transparency requirement. More specifically, any watermarks whose intensities are less than the JND values of an image can be added without degrading the visual quality. It takes extensive experimentations for an appropriate JND model. Motivated by the texture masking effect and the spatial masking effect, which are key factors of JND, Chou and Li (1995) proposed the well-known full-band JND model for the transparent watermark applications. In this paper, we propose a novel JND model based on discrete wavelet transform. Experimental results show that the performance of the proposed JND model is comparable to that of the full-band JND model. However, it has the advantage of saving a lot of computation time; the speed is about 6 times faster than that of the full-band JND model
    corecore