123 research outputs found

    ワイヤレス通信のための先進的な信号処理技術を用いた非線形補償法の研究

    Get PDF
    The inherit nonlinearity in analogue front-ends of transmitters and receivers have had primary impact on the overall performance of the wireless communication systems, as it gives arise of substantial distortion when transmitting and processing signals with such circuits. Therefore, the nonlinear compensation (linearization) techniques become essential to suppress the distortion to an acceptable extent in order to ensure sufficient low bit error rate. Furthermore, the increasing demands on higher data rate and ubiquitous interoperability between various multi-coverage protocols are two of the most important features of the contemporary communication system. The former demand pushes the communication system to use wider bandwidth and the latter one brings up severe coexistence problems. Having fully considered the problems raised above, the work in this Ph.D. thesis carries out extensive researches on the nonlinear compensations utilizing advanced digital signal processing techniques. The motivation behind this is to push more processing tasks to the digital domain, as it can potentially cut down the bill of materials (BOM) costs paid for the off-chip devices and reduce practical implementation difficulties. The work here is carried out using three approaches: numerical analysis & computer simulations; experimental tests using commercial instruments; actual implementation with FPGA. The primary contributions for this thesis are summarized as the following three points: 1) An adaptive digital predistortion (DPD) with fast convergence rate and low complexity for multi-carrier GSM system is presented. Albeit a legacy system, the GSM, however, has a very strict requirement on the out-of-band emission, thus it represents a much more difficult hurdle for DPD application. It is successfully implemented in an FPGA without using any other auxiliary processor. A simplified multiplier-free NLMS algorithm, especially suitable for FPGA implementation, for fast adapting the LUT is proposed. Many design methodologies and practical implementation issues are discussed in details. Experimental results have shown that the DPD performed robustly when it is involved in the multichannel transmitter. 2) The next generation system (5G) will unquestionably use wider bandwidth to support higher throughput, which poses stringent needs for using high-speed data converters. Herein the analog-to-digital converter (ADC) tends to be the most expensive single device in the whole transmitter/receiver systems. Therefore, conventional DPD utilizing high-speed ADC becomes unaffordable, especially for small base stations (micro, pico and femto). A digital predistortion technique utilizing spectral extrapolation is proposed in this thesis, wherein with band-limited feedback signal, the requirement on ADC speed can be significantly released. Experimental results have validated the feasibility of the proposed technique for coping with band-limited feedback signal. It has been shown that adequate linearization performance can be achieved even if the acquisition bandwidth is less than the original signal bandwidth. The experimental results obtained by using LTE-Advanced signal of 320 MHz bandwidth are quite satisfactory, and to the authors’ knowledge, this is the first high-performance wideband DPD ever been reported. 3) To address the predicament that mobile operators do not have enough contiguous usable bandwidth, carrier aggregation (CA) technique is developed and imported into 4G LTE-Advanced. This pushes the utilization of concurrent dual-band transmitter/receiver, which reduces the hardware expense by using a single front-end. Compensation techniques for the respective concurrent dual-band transmitter and receiver front-ends are proposed to combat the inter-band modulation distortion, and simultaneously reduce the distortion for the both lower-side band and upper-side band signals.電気通信大学201

    Advanced signal processing techniques for the modeling and linearization of wireless communication systems.

    Get PDF
    Los nuevos estándares de comunicaciones digitales inalámbricas están impulsando el diseño de amplificadores de potencia con unas condiciones límites en términos de linealidad y eficiencia. Si bien estos nuevos sistemas exigen que los dispositivos activos trabajen cerca de la zona de saturación en busca de la eficiencia energética, la no linealidad inherente puede producir que el sistema muestre prestaciones inadecuadas en emisiones fuera de banda y distorsión en banda. La necesidad de técnicas digitales de compensación y la evolución en el diseño de nuevas arquitecturas de procesamiento de señales digitales posicionan a la predistorsión digital (DPD) como un enfoque práctico. Los predistorsionadores digitales se suelen basar en modelos de comportamiento como el memory polynomial (MP), el generalized memory polynomial (GMP) y el dynamic deviation reduction-based (DDR), etc. Los modelos de Volterra sufren la llamada "maldición de la dimensionalidad", ya que su complejidad tiende a crecer de forma exponencial a medida que el orden y la profundidad de memoria crecen. Esta tesis se centra principalmente en contribuir a la rama de conocimiento que enmarca el modelado y linealización de sistemas de comunicación inalámbrica. Los principales temas tratados son el modelo Volterra-Parafac y el modelo general de Volterra para sistemas complejos, los cuales tratan la estructura del DPD y las series de Volterra estructuradas con compressed-sensing y un método para la linealización en un rango de potencias de operación, que se centran en cómo los coeficientes de los modelos deben ser obtenidos.Premio Extraordinario de Doctorado U

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Automatic transmit power control for power efficient communications in UAS

    Get PDF
    Nowadays, unmanned aerial vehicles (UAV) have become one of the most popular tools that can be used in commercial, scientific, agricultural and military applications. As drones become faster, smaller and cheaper, with the ability to add payloads, the usage of the drone can be versatile. In most of the cases, unmanned aerials systems (UAS) are equipped with a wireless communication system to establish a link with the ground control station to transfer the control commands, video stream, and payload data. However, with the limited onboard calculation resources in the UAS, and the growing size and volume of the payload data, computational complex signal processing such as deep learning cannot be easily done on the drone. Hence, in many drone applications, the UAS is just a tool for capturing and storing data, and then the data is post-processed off-line in a more powerful computing device. The other solution is to stream payload data to the ground control station (GCS) and let the powerful computer on the ground station to handle these data in real-time. With the development of communication techniques such as orthogonal frequency-division multiplexing (OFDM) and multiple-input multiple-output (MIMO) transmissions, it is possible to increase the spectral efficiency over large bandwidths and consequently achieve high transmission rates. However, the drone and the communication system are usually being designed separately, which means that regardless of the situation of the drone, the communication system is working independently to provide the data link. Consequently, by taking into account the position of the drone, the communication system has some room to optimize the link budget efficiency. In this master thesis, a power-efficient wireless communication downlink for UAS has been designed. It is achieved by developing an automatic transmit power control system and a custom OFDM communication system. The work has been divided into three parts: research of the drone communication system, an optimized communication system design and finally, FPGA implementation. In the first part, an overview on commercial drone communication schemes is presented and discussed. The advantages and disadvantages shown are the source of inspiration for improvement. With these ideas, an optimized scheme is presented. In the second part, an automatic transmit power control system for UAV wireless communication and a power-efficient OFDM downlink scheme are proposed. The automatic transmit power control system can estimate the required power level by the relative position between the drone and the GCS and then inform the system to adjust the power amplifier (PA) gain and power supply settings. To obtain high power efficiency for different output power levels, a searching strategy has been applied to the PA testbed to find out the best voltage supply and gain configurations. Besides, the OFDM signal generation developed in Python can encode data bytes to the baseband signal for testing purpose. Digital predistortion (DPD) linearization has been included in the transmitter’s design to guarantee the signal linearity. In the third part, two core algorithms: IFFT and LUT-based DPD, have been implemented in the FPGA platform to meet the real-time and high-speed I/O requirements. By using the high-level synthesis design process provided by Xilinx Corp, the algorithms are implemented as reusable IP blocks. The conclusion of the project is given in the end, including the summary of the proposed drone communication system and envisioning possible future lines of research
    corecore