657 research outputs found

    Increasing the talk-time of mobile radios with efficient linear transmitter architectures

    Get PDF

    Dynamic selection and estimation of the digital predistorter parameters for power amplifier linearization

    Get PDF
    © © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a new technique that dynamically estimates and updates the coefficients of a digital predistorter (DPD) for power amplifier (PA) linearization. The proposed technique is dynamic in the sense of estimating, at every iteration of the coefficient's update, only the minimum necessary parameters according to a criterion based on the residual estimation error. At the first step, the original basis functions defining the DPD in the forward path are orthonormalized for DPD adaptation in the feedback path by means of a precalculated principal component analysis (PCA) transformation. The robustness and reliability of the precalculated PCA transformation (i.e., PCA transformation matrix obtained off line and only once) is tested and verified. Then, at the second step, a properly modified partial least squares (PLS) method, named dynamic partial least squares (DPLS), is applied to obtain the minimum and most relevant transformed components required for updating the coefficients of the DPD linearizer. The combination of the PCA transformation with the DPLS extraction of components is equivalent to a canonical correlation analysis (CCA) updating solution, which is optimum in the sense of generating components with maximum correlation (instead of maximum covariance as in the case of the DPLS extraction alone). The proposed dynamic extraction technique is evaluated and compared in terms of computational cost and performance with the commonly used QR decomposition approach for solving the least squares (LS) problem. Experimental results show that the proposed method (i.e., combining PCA with DPLS) drastically reduces the amount of DPD coefficients to be estimated while maintaining the same linearization performance.Peer ReviewedPostprint (author's final draft

    Experimental demonstration of digital predistortion for orthogonal frequency-division multiplexing-radio over fibre links near laser resonance

    Get PDF
    Radio over fibre (RoF), an enabling technology for distribution of wireless broadband service signals through analogue optical links, suffers from non-linear distortion. Digital predistortion has been demonstrated as an effective approach to overcome the RoF non-linearity. However, questions remain as to how the approach performs close to laser resonance, a region of significant dynamic non-linearity, and how resilient the approach is to changes in input signal and link operating conditions. In this work, the performance of a digital predistortion approach is studied for directly modulated orthogonal frequency-division multiplexing RoF links operating from 2.47 to 3.7 GHz. It extends previous works to higher frequencies, and to higher quadrature amplitude modulation (QAM) levels. In addition, the resilience of the predistortion approach to changes in modulation level of QAM schemes, and average power levels are investigated, and a novel predistortion training approach is proposed and demonstrated. Both memoryless and memory polynomial predistorter models, and a simple off-line least-squares-based identification method, are used, with excellent performance improvements demonstrated up to 3.0 GHz

    Fiber link design considerations for cloud-Radio Access Networks

    Get PDF
    Analog radio over fiber (RoF) links may offer advantages for cloud-Radio Access Networks in terms of component cost, but the behavior of the distortion with large numbers of subcarriers needs to be understood. In this paper, this is presented in terms of the variation between subcarriers. Memory polynomial predistortion is also shown to compensate for RoF and wireless path distortion. Whether for digitized or analog links, it is shown that appropriate framing structure parameters must be used to assure performance, especially of time-division duplex systems

    Behavioral modeling of GaN-based power amplifiers: impact of electrothermal feedback on the model accuracy and identification

    No full text
    In this article, we discuss the accuracy of behavioral models in simulating the intermodulation distortion (IMD) of microwave GaN-based high-power amplifiers in the presence of strong electrothermal (ET) feedback. Exploiting an accurate self-consistent ET model derived from measurements and thermal finite-element method simulations, we show that behavioral models are able to yield accurate results, provided that the model identification is carried out with signals with wide bandwidth and large dynamics

    Linear transmitter design for MSAT terminals

    Get PDF
    One of the factors that will undoubtedly influence the choice of modulation format for mobile satellites, is the availability of cheap, power-efficient, linear amplifiers for mobile terminal equipment operating in the 1.5-1.7 GHz band. Transmitter linearity is not easily achieved at these frequencies, although high power (20W) class A/AB devices are becoming available. However, these components are expensive and require careful design to achieve a modest degree of linearity. In this paper an alternative approach to radio frequency (RF) power amplifier design for mobile satellite (MSAT) terminals using readily-available, power-efficient, and cheap class C devices in a feedback amplifier architecture is presented

    A Digital signal processing-based predistortion technique for reduction of intermodulation distortion

    Get PDF
    Linearization of power amplifiers has been the topic of many studies, dating back to the work of H. S. Black in the 1920s. For many applications, the well-documented techniques of feedforward and feedback can be used to design low intermodulation distortion (IMD) amplifiers. However, certain applications, including the design of high-power, radio frequency amplifiers, preclude the use of these techniques. The work herein describes an alternative to presently accepted distortion reduction techniques. In-band IM distortion (multi-tone distortion located close in frequency to the desired signal) , is reduced by modifying a baseband input, upconverting this signal to the transmission frequency, then performing the amplification. This allows DSP hardware to be used, resulting in a novel IMD reduction method. The approach presented is unique in that multiple orders of nonlinearity are reduced using DSP technology, at baseband, through a commonly used method of upconversion. Existing work has addressed mostly third-order, analog solutions applied at the frequency of transmission. Theoretical work, simulations, and experimental results are used to describe the technique. Advantages and limitations are discussed, as are areas for future work

    Contribution to dimensionality reduction of digital predistorter behavioral models for RF power amplifier linearization

    Get PDF
    The power efficiency and linearity of radio frequency (RF) power amplifiers (PAs) are critical in wireless communication systems. The main scope of PA designers is to build the RF PAs capable to maintain high efficiency and linearity figures simultaneously. However, these figures are inherently conflicted to each other and system-level solutions based on linearization techniques are required. Digital predistortion (DPD) linearization has become the most widely used solution to mitigate the efficiency versus linearity trade-off. The dimensionality of the DPD model depends on the complexity of the system. It increases significantly in high efficient amplification architectures when considering current wideband and spectrally efficient technologies. Overparametrization may lead to an ill-conditioned least squares (LS) estimation of the DPD coefficients, which is usually solved by employing regularization techniques. However, in order to both reduce the computational complexity and avoid ill-conditioning problems derived from overparametrization, several efforts have been dedicated to investigate dimensionality reduction techniques to reduce the order of the DPD model. This dissertation contributes to the dimensionality reduction of DPD linearizers for RF PAs with emphasis on the identification and adaptation subsystem. In particular, several dynamic model order reduction approaches based on feature extraction techniques are proposed. Thus, the minimum number of relevant DPD coefficients are dynamically selected and estimated in the DPD adaptation subsystem. The number of DPD coefficients is reduced, ensuring a well-conditioned LS estimation while demanding minimum hardware resources. The presented dynamic linearization approaches are evaluated and compared through experimental validation with an envelope tracking PA and a class-J PA The experimental results show similar linearization performance than the conventional LS solution but at lower computational cost.La eficiencia energetica y la linealidad de los amplificadores de potencia (PA) de radiofrecuencia (RF) son fundamentales en los sistemas de comunicacion inalambrica. El principal objetivo a alcanzar en el diserio de amplificadores de radiofrecuencia es lograr simultaneamente elevadas cifras de eficiencia y de linealidad. Sin embargo, estas cifras estan inherentemente en conflicto entre si, y se requieren soluciones a nivel de sistema basadas en tecnicas de linealizacion. La linealizacion mediante predistorsion digital (DPD) se ha convertido en la solucion mas utilizada para mitigar el compromise entre eficiencia y linealidad. La dimension del modelo del predistorsionador DPD depende de la complejidad del sistema, y aumenta significativamente en las arquitecturas de amplificacion de alta eficiencia cuando se consideran los actuales anchos de banda y las tecnologfas espectralmente eficientes. El exceso de parametrizacion puede conducir a una estimacion de los coeficientes DPD, mediante minimos cuadrados (LS), mal condicionada, lo cual generalmente se resuelve empleando tecnicas de regularizacion. Sin embargo, con el fin de reducir la complejidad computacional y evitar dichos problemas de mal acondicionamiento derivados de la sobreparametrizacion, se han dedicado varies esfuerzos para investigar tecnicas de reduccion de dimensionalidad que permitan reducir el orden del modelo del DPD. Esta tesis doctoral contribuye a aportar soluciones para la reduccion de la dimension de los linealizadores DPD para RF PA, centrandose en el subsistema de identificacion y adaptacion. En concrete, se proponen varies enfoques de reduccion de orden del modelo dinamico, basados en tecnicas de extraccion de caracteristicas. El numero minimo de coeficientes DPD relevantes se seleccionan y estiman dinamicamente en el subsistema de adaptacion del DPD, y de este modo la cantidad de coeficientes DPD se reduce, lo cual ademas garantiza una estimacion de LS bien condicionada al tiempo que exige menos recursos de hardware. Las propuestas de linealizacion dinamica presentados en esta tesis se evaluan y comparan mediante validacion experimental con un PA de seguimiento de envolvente y un PA tipo clase J. Los resultados experimentales muestran unos resultados de linealizacion de los PA similares a los obtenidos cuando se em plea la solucion LS convencional, pero con un coste computacional mas reducido.Postprint (published version

    Optimization Of 5.7 Ghz Class E Power Amplifier For The Application Of Envelope Elimination And Restoration

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007Rekabetin yoğun olduğu günümüzde tasarımcılar hafif, boyutları daha küçük ve düşük güçle çalışan yüksek performanslı ürün geliştirmenin yollarını aramaktadırlar. RF alıcı uygulamalarında güç kuvvetlendiricileri en fazla güç sarfiyatının olduğu bölümdür. Kablosuz iletişim sistemlerinde güç küvvetlendiricisi verimi maliyeti direkt olarak etkilemektedir. Teorik olarak %100 verim elde edilebilen E-sınıfı güç kuvvetlendiricileri transistorların açık/kapalı durum geçişlerinde güç sarfiyatını minimize edebilmektedir. Ayrıca çıkış gerilimi kaynak gerilimi ile doğrusal değişmektedir. Bu çalışmada E sınıfı güç kuvvetlendiricilerinin tasarım metodları ele alınmıştır. 5.7 GHz de çalışan birinde toplu devre elemanları, diğerinde transmisyon hattı elemanları kullanımış E sınıfı güç kuvvetlendiricileri tasarlanmıştır. Her iki devrede de %50 güç ekli verim (GEV) ve 500mW çıkış gücü elde edilmiştir. Sinyaldeki bozulmayı azaltmak için başvurulan doğrusallaştırma yöntemi Zarf Yoketme ve Tekrar Oluşturma metodudur. E sınıfı kuvvetlendiricinin Zarf Yoketme ve Tekrar Oluşturma yöntemi kullanılarak doğrusallaştırılmasıyla IMD bileşenlerinde 7.5 dB azalmış olup seviyesi gerçek işaretin 20dB altındadır.In today’s competitive, manufactures and product developers are seeking ways to build high performance devices that are lighter in weight, smaller in size and operating at lower power. In transceiver applications one module is responsible for a large portion of the power consumption - the power amplifier. The efficiency of the power amplifier has a direct impact on the cost of the wireless communication system. The class-E amplifier has a maximum theoretical efficiency of 100%. Class E power amplifiers have the ability to minimize power loss during on/off transitions of the transistor. Also, the output voltage varies linearly with the supply voltage. This thesis describes the design and the linearization methodology of the Class E amplifiers. Two class-E amplifiers operating at 5.7 GHz are presented. One of them is a lumped elements based circuit and the other is a transmission lines based circuit. Both circuit show good performance with 50% PAE and have 500mW output power. Envelope elimination and restoration is the linearization method chosen to achieve reduction of signal distortion. Linearization Class E PA using EER system provides an additional 7.5 dB reduction in intermodulation distortion products, achieving a minimum distortion level of 20 dB below the fundamental signals.Yüksek LisansM.Sc

    Linearization of RF Power Amplifiers Using Adaptive Kalman Filtering Algorithm

    No full text
    International audienceIn this paper, a new linearization algorithm of Power Amplifier, based on Kalman filtering theory is proposed for obtaining fast convergence of the adaptive digital predistortion. The proposed method uses the real-time digital processing of baseband signals to compensate the nonlinearities and memory effects in radio-frequency Power Amplifier. To reduce the complexity of computing in classical Kalman Filtering, a sliding time-window has been inserted which combines off-line measurement and on-line parameter estimation with high sampling time to track the changes in the PA characteristics. We evaluated the performance of the proposed linearization scheme through simulation and experiments. Using digital signal processing, experimental results with commercial power amplifier are presented for multicarrier signals to demonstrate the effectiveness of this new approach
    corecore