175 research outputs found

    Machine Learning in Digital Signal Processing for Optical Transmission Systems

    Get PDF
    The future demand for digital information will exceed the capabilities of current optical communication systems, which are approaching their limits due to component and fiber intrinsic non-linear effects. Machine learning methods are promising to find new ways of leverage the available resources and to explore new solutions. Although, some of the machine learning methods such as adaptive non-linear filtering and probabilistic modeling are not novel in the field of telecommunication, enhanced powerful architecture designs together with increasing computing power make it possible to tackle more complex problems today. The methods presented in this work apply machine learning on optical communication systems with two main contributions. First, an unsupervised learning algorithm with embedded additive white Gaussian noise (AWGN) channel and appropriate power constraint is trained end-to-end, learning a geometric constellation shape for lowest bit-error rates over amplified and unamplified links. Second, supervised machine learning methods, especially deep neural networks with and without internal cyclical connections, are investigated to combat linear and non-linear inter-symbol interference (ISI) as well as colored noise effects introduced by the components and the fiber. On high-bandwidth coherent optical transmission setups their performances and complexities are experimentally evaluated and benchmarked against conventional digital signal processing (DSP) approaches. This thesis shows how machine learning can be applied to optical communication systems. In particular, it is demonstrated that machine learning is a viable designing and DSP tool to increase the capabilities of optical communication systems

    Living and dealing with RF impairments in communication transceivers

    Get PDF
    This paper provides an overview of the sources and effects of the RF impairments limiting and rendering the performance of the future wireless communication transceivers costly as well as hindering their wide-spread use in commercial products. As transmission bandwidths and carrier frequencies increase effect of these impairments worsen. This paper studies and presents analytical evaluations of the performance degradation due to the RF impairments in terms of bit-error-rate and image rejection ratio. The paper also give highlights of the various aspects of the research carried out in mitigating the effects of these impairments primarily in the digital signal processing domain at the baseband as well as providing low-complexity hardware implementations of such algorithms incorporating a number of power and area saving techniques

    Conformação de pulso de formas de onda OFDM para a interface aérea 5G

    Get PDF
    Orientador: Luís Geraldo Pedroso MeloniDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: As formas de onda com multiplexação ortogonal por divisão de freqüência (OFDM) foram utilizadas com sucesso na interface aérea 3GPP LTE para superar a seletividade do canal e proporcionar uma boa eficiência espectral e altas taxas de transmissão de dados. O próximo sistema de comunicações 5G tem como objetivo oferecer suporte a mais serviços do que o antecessor, como comunicações de banda larga móveis, comunicações de tipo máquina e comunicações de baixa latência, e considera muitos outros cenários de aplicação, como o uso de espectro fragmentado. Esta diversidade de serviços com diferentes requisitos não pode ser suportada pela OFDM convencional, pois OFDM configura toda a largura de banda com parâmetros que atendem a um serviço em particular. Além disso, pode ocorrer interferência interportadora (ICI) quando a OFDM convencional é usada com multiplexação assíncrona de múltiplos usuários e isso é devido às altas emissões fora de banda (OOB) das subportadoras e à violação da condição de ortogonalidade do sinal. Portanto, para atender aos requisitos das futuras aplicações sem fio 5G, o desenvolvimento de uma interface aérea inovadora com novas capacidades torna-se necessário, em particular, uma nova forma de onda mais espectralmente ágil do que OFDM capaz de suportar múltiplas configurações, suprimindo efetivamente a interferência entre usuários, e com integração direta com as camadas superiores. Este trabalho centra-se em duas técnicas de conformação de pulsos para reduzir a emissões fora de banda e melhorar o desempenho de formas de onda baseadas em OFDM. A conformação de pulsos pode permitir o uso de parametrizações múltiplas dentro da forma de onda e abandonar os paradigmas rígidos de ortogonalidade e sincronismo com uma degradação de desempenho causada por interferência intersymbol (ISI) e ICI relativamente baixa. A primeira parte aborda um método de modelagem de pulso baseado na filtragem por subportadora para reduzir a emissão fora de banda no transmissor e interferência de canal adjacente (ACI) no receptor. Ele pode ser implementado usando funções de janela e alguns formatos de janela são apresentados nesta parte. O primeiro usa o prefixo cíclico (CP) existente dos símbolos para suavizar as transições abruptas do sinal, portanto, os grandes lóbulos espectrais sinc causados pelos filtros retangulares. Isso garante a compatibilidade retroativa em sistemas que usam OFDM com prefixo cíclico (CP-OFDM). O formato da segunda janela estende o comprimento do CP para reter a capacidade da forma de onda para combater a propagação do atraso do canal. Os efeitos no desempenho do ISI e ICI são estudados em termos de relação de sinal para interferência (SIR) e taxa de erro de bit (BER) usando formas de onda LTE em um cenário de espectro fragmentado multi-usuário. A segunda parte deste trabalho aborda o desenho e análise de filtros para a contenção espectral flexível em transceptores com filtragem baseada em sub-banda. Este filtro, chamado aqui semi-equiripple, exibe melhor atenuação na banda de rejeição para reduzir as interferências entre subbandas do que os filtros equiripple e filtros sinc baseados em janelamento e também possui boas características de resposta ao impulso para reduzir o ISI. O projeto de filtros baseia-se no algoritmo Parks-McClellan para obter diferentes taxas de decaimento da banda de parada e atende a especificações arbitrárias de máscaras de emissão de espectro (SEM) com baixa distorção dentro da banda. Portanto, pode ser útil para obter baixas emissões fora da banda e configurar sub-bandas com parâmetros independentes, uma vez que a interferência assíncrona é contida pelos filtros. São estudadas três distorções de ISI no filtro: espalhamento de símbolos relacionado à causalidade do filtro, ecos de símbolos devido a ondulações na banda e amplificação de ISI devido a amostras de valores anômalas nas caudas de sua resposta de impulso. O desempenho do filtro é avaliado em termos de densidade de espectro de potência (PSD) e conformidade com SEMs, taxa de erro de modulação (MER) e operação em um esquema assíncrono multi-serviço usando uma única forma de onda. O SIR e o efeito da filtragem na precisão da modulação são avaliados usando formas de onda OFDM ISDB-T e LTE. Estruturas de hardware flexíveis também são propostas para implementações reais. Os resultados mostram que esses métodos de conformação de pulso permitem que a forma de onda explore os fragmentos de espectro disponíveis e ofereça suporte a múltiplos serviços sem uma penalidade de desempenho significativa, o que pode permitir uma interface aérea mais flexívelAbstract: Orthogonal frequency division multiplexing (OFDM) waveforms have been used successfully in the 3GPP Long Term Evolution (LTE) air interface to overcome the channel selectivity and to provide good spectrum efficiency and high transmission data rates. The forthcoming 5G communication system aims to support more services than its predecessor, such as enhanced mobile broadband, machine-type communications and low latency communications, and considers many other application scenarios such as the fragmented spectrum use. This diversity of services with different requirements cannot be supported by conventional OFDM since OFDM configures the entire bandwidth with parameters attending one service in particular. Also, substantial intercarrier interference (ICI) can occur when conventional OFDM is used with asynchronous multiuser multiplexing and this is due to the high out-of-band (OOB) emissions of the subcarriers and the violation of the signal orthogonality constraint. Therefore, to meet the requirements of future 5G wireless applications, the development of an innovative air interface with new capabilities becomes necessary, in particular, a new waveform more spectrally agile than OFDM capable of supporting multiple configurations, suppressing the inter-user interference effectively, and with straightforward integration with the upper layers. This work focuses on two pulse shaping techniques to reduce the OOB emission and improve the in-band and OOB performances of OFDM-based waveforms. Pulse shaping can enable the use of multiple parameterizations within the waveform and abandon the strict paradigms of orthogonality and synchronism with relatively low performance degradation caused by intersymbol interference (ISI) and ICI. The first part addresses a pulse shaping method based on per-subcarrier filtering to reduce both OOB emission in the transmitter and adjacent channel interference (ACI) in the receiver. It can be implemented using window functions and some window formats are presented in this part. The first uses the existing cyclic prefix (CP) of OFDM symbols to smooth abrupt transitions of the signal, thus the large sinc spectral sidelobes caused by the rectangular filters. This guarantees backwards compatibility in systems using conventional cyclic prefixed OFDM (CP-OFDM). The second window format extends the CP length to retain the waveform ability to combat channel delay spread. The effects on performance of ISI and ICI are studied in terms of the signal to interference ratio (SIR) and bit error rate (BER) using LTE waveforms in a multi-user fragmented spectrum scenario. The second part of this work addresses the design and analysis of a filters for flexible spectral containment in subband-based filtering transceivers. This filter, called here semi-equiripple, exhibits better stopband attenuation to reduce the inter-subband interferences than equiripple and windowed truncated sinc filters and also has good impulse response characteristics to reduce ISI. The design is based on the Parks-McClellan algorithm to obtain different stopband decay rates and meet arbitrary spectrum emission masks (SEM) specifications with low in-band distortion. Therefore, it can be useful to achieve low OOB emission and configure subbands with independent parameters since the asynchronous interference is contained by the filters. Three ISI distortions in the filter are studied: symbol spreading related to the filter causality, symbol echoes due to in-band ripples, and ISI amplification due to outlier samples in the tails of its impulse response. The performance of the filter is assessed in terms of the power spectrum density (PSD) and compliance with tight SEMs, modulation error rate (MER) and operation in a multi-service asynchronous scheme using a single waveform. The SIR and the effect of filtering on the modulation accuracy are evaluated using OFDM ISDB-T and LTE waveforms. Flexible hardware structures are also proposed for actual implementations. The results show that these pulse shaping methods enable the waveform to exploit the available spectrum fragments and support multiple services without significant performance penalty, which can allow a more flexible air interfaceMestradoTelecomunicações e TelemáticaMestre em Engenharia ElétricaCAPE

    Carrier Phase Estimation Through the Rotation Algorithm for 64-QAM Optical Systems

    Get PDF
    A novel low-complexity two-stage digital feedforward carrier phase estimation algorithm based on the rotation of constellation points to remove phase modulation for a 64-ary quadrature amplitude modulation (QAM) system is proposed and analyzed both experimentally and through numerical simulations. The first stage is composed of a Viterbi and Viterbi (V&V) block, based on either the standard quadrature phase shift keying (QPSK) partitioning algorithm using only Class-1 symbols or a modified QPSK partitioning scheme utilizing both Class-1 and outer most triangle-edge (TE) symbols. The second stage applies the V&V algorithm after the removal of phase modulation through rotation of constellation points. Comparison of the proposed scheme with constellation transformation, blind phase search (BPS) and BPS+MLE (maximum likelihood estimation) algorithm is also shown. For an OSNR penalty of 1 dB at bit error rate of 1e−2 , the proposed scheme can tolerate a linewidth times symbol duration product (Δν · Ts) equal to 3.7 × 1e−5 , making it possible to operate 32-GBd optical 64-QAM systems with current commercial tunable laser

    Adaptive multilevel quadrature amplitude radio implementation in programmable logic

    Get PDF
    Emerging broadband wireless packet data networks are increasingly employing spectrally efficient modulation methods like Quadrature Amplitude Modulation (QAM) to increase the channel efficiency and maximize data throughput. Unfortunately, the performance of high level QAM modulations in the wireless channel is sensitive to channel imperfections and throughput is degraded significantly at low signal-to-noise ratios due to bit errors and packet retransmission. To obtain a more “robust” physical layer, broadband systems are employing multilevel QAM (M-QAM) to mitigate this reduction in throughput by adapting the QAM modulation level to maintain acceptable packet error rate (PER) performance in changing channel conditions. This thesis presents an adaptive M-QAM modem hardware architecture, suitable for use as a modem core for programmable software defined radios (SDRs) and broadband wireless applications. The modem operates in “burst” mode, and can reliably synchronize to different QAM constellations “burst-by-burst”. Two main improvements exploit commonality in the M-QAM constellations to minimize the redundant hardware required. First, the burst synchronization functions (carrier, clock, amplitude, and modulation level) operate reliably without prior knowledge of the QAM modulation level used in the burst. Second, a unique bit stuffing and shifting technique is employed which supports variable bit rate operation, while reducing the core signal processing functions to common hardware for all constellations. These features make this architecture especially attractive for implementation with Field Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs); both of which are becoming popular for highly integrated, cost-effective wireless transceivers

    Efficient channel equalization algorithms for multicarrier communication systems

    Get PDF
    Blind adaptive algorithm that updates time-domain equalizer (TEQ) coefficients by Adjacent Lag Auto-correlation Minimization (ALAM) is proposed to shorten the channel for multicarrier modulation (MCM) systems. ALAM is an addition to the family of several existing correlation based algorithms that can achieve similar or better performance to existing algorithms with lower complexity. This is achieved by designing a cost function without the sum-square and utilizing symmetrical-TEQ property to reduce the complexity of adaptation of TEQ to half of the existing one. Furthermore, to avoid the limitations of lower unstable bit rate and high complexity, an adaptive TEQ using equal-taps constraints (ETC) is introduced to maximize the bit rate with the lowest complexity. An IP core is developed for the low-complexity ALAM (LALAM) algorithm to be implemented on an FPGA. This implementation is extended to include the implementation of the moving average (MA) estimate for the ALAM algorithm referred as ALAM-MA. Unit-tap constraint (UTC) is used instead of unit-norm constraint (UNC) while updating the adaptive algorithm to avoid all zero solution for the TEQ taps. The IP core is implemented on Xilinx Vertix II Pro XC2VP7-FF672-5 for ADSL receivers and the gate level simulation guaranteed successful operation at a maximum frequency of 27 MHz and 38 MHz for ALAM-MA and LALAM algorithm, respectively. FEQ equalizer is used, after channel shortening using TEQ, to recover distorted QAM signals due to channel effects. A new analytical learning based framework is proposed to jointly solve equalization and symbol detection problems in orthogonal frequency division multiplexing (OFDM) systems with QAM signals. The framework utilizes extreme learning machine (ELM) to achieve fast training, high performance, and low error rates. The proposed framework performs in real-domain by transforming a complex signal into a single 2–tuple real-valued vector. Such transformation offers equalization in real domain with minimum computational load and high accuracy. Simulation results show that the proposed framework outperforms other learning based equalizers in terms of symbol error rates and training speeds

    Advanced modulation for optical communication systems

    Get PDF
    La demande toujours croissante pour la capacité du réseau conduit au développement de systèmes de communication optique pour couvrir les normes Terabit Ethernet récemment proposées. Les applications de courte distance nécessitent une solution peu coûteuse et peu complexe avec détection directe. Cependant, le coût de la détection cohérente diminue chaque jour et en fait un bon candidat pour les applications à courte distance futures afin d'accroître l'efficacité spectrale et d'utiliser des formats de modulation avancés. Dans cette thèse, nous étudions des solutions pour les applications court-courrier actuelles et futures. Dans la première partie, nous nous concentrons sur des solutions pour les applications de courte distance. Le premier chapitre est la première démonstration de la transmission multi-tonalité discrète (DMT) à plus de 100 Gb/s en utilisant une photonique au silicium en bande O (SiP). Nous comparons expérimentalement le DMT avec la modulation d'amplitude d'impulsion (PAM) sur la bande O. Notre expérience montre qu'en augmentant la longueur des fibres de plus de 10 km, la PAM surpasse le DMT. Pour la bande C, nous utilisons un multi-ton discret à bande latérale unique (SSB-DMT) pour éviter l'effet d'évanouissement de la puissance induit par la dispersion chromatique. Nous étudions l'effet du bruit de phase, de la dispersion chromatique et de la sensibilité du récepteur pour optimiser le signal du DMT et extraire des équations théoriques pour calculer le taux d'erreur binaire (BER) du SSB-DMT. Ensuite, nous comparons la PAM sur bande O avec le SSB-DMT sur bande C et quantifions l'impact des limitations imposées par le matériel sur les deux formats de modulation. Notre étude fournit un outil analytique pour les applications de courte distance afin de sélectionner le format et le matériel de modulation appropriés en fonction de la portée requise, du débit binaire, etc. Dans la deuxième partie, le ciblage des futurs systèmes de détection cohérents justifié l'utilisation d'un format de modulation complexe avec détection cohérente. Nous utilisons un format de modulation avancé dans lequel nous avons combiné la propagation de transformée de Fourier discrète avec le DMT pour augmenter l'efficacité spectrale. Le format de modulation hybride a un rapport de puissance crête à moyenne inférieur (vis-à-vis du DMT) et une efficacité spectrale plus élevée (vis-à-vis de la QAM _a porteuse unique). Dans la première étape, nous comparons expérimentalement les performances des modulations hybrides, DMT standard et monoporteuse en utilisant un modulateur SiP IQ. Ensuite, nous développons une stratégie de contrôle pour le format de modulation hybride en échangeant la non-linéarité de la fonction de transfert du modulateur et le rapport signal / bruit optique. Le format de modulation hybride est ensuite optimisé pour avoir un débit maximum. En utilisant une simulation de Monte Carlo, nous comparons le format de modulation hybride optimisé avec le DMT standard pour différents débits binaires. Enfin, nous avons une comparaison de complexité entre hybride et DMT pour différentes longueurs de fibre.Ever increasing demand for network capacity is driving the development of optical communication systems to cover recently proposed Terabit Ethernet standards. Short haul applications need low cost and low complexity solutions with direct detection, as the cost of coherent detection comes down, it will become a good candidate for future short-haul applications to increase spectral efficiency and exploit advanced modulation formats. In this thesis, we investigate solutions for both current and future short-haul systems. In the first part, we focus on solutions for short haul applications. The first chapter is the first time demonstration of more than 100 Gb/s discrete multi-tone (DMT) transmission using an O-band silicon photonics (SiP). We experimentally compare DMT with pulse amplitude modulation (PAM) on O-band. Our experiment shows that by increasing fiber length more than 10 km, PAM outperforms DMT. For C-band, we use single sideband discrete multi-tone (SSB-DMT) to avoid chromatic dispersion-induced power fading e_ect. We study the effect of phase noise, chromatic dispersion, and receiver sensitivity to optimize DMT signal and extract theoretical equations to calculate bit error rate (BER) of SSB-DMT. Next, we analytically compare PAM on O-band with SSB-DMT on C-band and quantify the impact of hardware-imposed limitations on both modulation formats. Our study provides an analytical tool for short haul applications to select appropriate modulation format and hardware based on required reach, bit rate, etc. In the second part we examine complex modulation formats that will be enabled in the future by low cost, integrated components for coherent detection.. We use an advanced modulation format in which we combined discrete Fourier transform spread with DMT to increase spectral efficiency. Hybrid modulation format has a lower peak to average power ratio (vis-a-vis DMT) and higher spectral efficiency (vis-a-vis single carrier QAM). In the first step, we experimentally compare the performance of the hybrid, standard DMT, and single carrier modulations using a SiP IQ modulator. Next, we develop a driving strategy for hybrid modulation format by trading off the modulator transfer function non-linearity and optical signal to noise ratio. Then hybrid modulation format is optimized to have maximum throughput. Using Monte Carlo simulation we compare optimized hybrid modulation format with standard DMT for different bit rates. Finally, we have a complexity comparison between hybrid and DMT for different fiber lengths to motivate same investigation for long-haul applications where, we should consider fiber non-linearity, attenuation, a polarization multiplexing
    corecore