2,164 research outputs found

    Algorithms and VLSI architectures for parametric additive synthesis

    Get PDF
    A parametric additive synthesis approach to sound synthesis is advantageous as it can model sounds in a large scale manner, unlike the classical sinusoidal additive based synthesis paradigms. It is known that a large body of naturally occurring sounds are resonant in character and thus fit the concept well. This thesis is concerned with the computational optimisation of a super class of form ant synthesis which extends the sinusoidal parameters with a spread parameter known as band width. Here a modified formant algorithm is introduced which can be traced back to work done at IRCAM, Paris. When impulse driven, a filter based approach to modelling a formant limits the computational work-load. It is assumed that the filter's coefficients are fixed at initialisation, thus avoiding interpolation which can cause the filter to become chaotic. A filter which is more complex than a second order section is required. Temporal resolution of an impulse generator is achieved by using a two stage polyphase decimator which drives many filterbanks. Each filterbank describes one formant and is composed of sub-elements which allow variation of the formant’s parameters. A resource manager is discussed to overcome the possibility of all sub- banks operating in unison. All filterbanks for one voice are connected in series to the impulse generator and their outputs are summed and scaled accordingly. An explorative study of number systems for DSP algorithms and their architectures is investigated. I invented a new theoretical mechanism for multi-level logic based DSP. Its aims are to reduce the number of transistors and to increase their functionality. A review of synthesis algorithms and VLSI architectures are discussed in a case study between a filter based bit-serial and a CORDIC based sinusoidal generator. They are both of similar size, but the latter is always guaranteed to be stable

    Some Optimizations of Hardware Multiplication by Constant Matrices

    Get PDF
    International audienceThis paper presents some improvements on the optimization of hardware multiplication by constant matrices. We focus on the automatic generation of circuits that involve constant matrix multiplication, i.e. multiplication of a vector by a constant matrix. The proposed method, based on number recoding and dedicated common sub-expression factorization algorithms was implemented in a VHDL generator. Our algorithms and generator have been extended to the case of some digital filters based on multiplication by a constant matrix and delay operations. The obtained results on several applications have been implemented on FPGAs and compared to previous solutions. Up to 40% area and speed savings are achieved

    Low power FIR filter design using Graph Based Algorithm

    Get PDF
    Digital filters are a very important part of DSP. In fact, their efficient performance is one of the key reasons that DSP has become so popular. In this paper, we designed an FIR filter using graph based algorithm. Common Sub expression Elimination (CSE) algorithm has a drawback that, it defines the constant in number representation such as CSD (or) MSD, binary. But, when implementing Graph Based (GB) algorithm, it is not restricted to any number of representation of constant. By reducing the height of the tree structure, the numbers of adders are reduced. It reduces the area and power than existing one. The implementation of GB Algorithm is done by Verilog. DOI: 10.17762/ijritcc2321-8169.15036

    Evolutionary design of digital VLSI hardware

    Get PDF

    Design of quadrature mirror filter banks with canonical signed digit coefficients using genetic algorithms.

    Get PDF
    This thesis is about the use of a genetic algorithm to design QMF bank with canonical signed digit coefficients. A filter bank has applications in areas like video and audio coding, data communication, etc. Filter bank design is a multiobjective optimization problem. The performance depends on the reconstruction error of the overall filter bank and the individual performance of the composing lowpass filter. In this thesis we have used reconstruction error of the overall filter bank as our main objective and passband error, stopband error, stopband and passband ripples and transition width of the individual lowpass filter as constraints. Therefore filter bank design can be formulated as single objective multiple constraint optimization problem. A unique genetic algorithm is developed to optimize filer bank coefficients such that the corresponding system\u27s response matches that of an ideal system with an additional constraint that all coefficients are in canonical signed digit (CSD) format. A special restoration technique is used to restore the CSD format of the coefficients after crossover and mutation operators in Genetic algorithm. The proposed restoration technique maintains the specified word length and the maximum number of nonzero digits in filter banks coefficients. Experimental results are presented at the end. It is demonstrated that the designed genetic algorithm is reliable, and efficient for designing QMF banks.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .U67. Source: Masters Abstracts International, Volume: 43-05, page: 1785. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Design of approximate overclocked datapath

    Get PDF
    Embedded applications can often demand stringent latency requirements. While high degrees of parallelism within custom FPGA-based accelerators may help to some extent, it may also be necessary to limit the precision used in the datapath to boost the operating frequency of the implementation. However, by reducing the precision, the engineer introduces quantisation error into the design. In this thesis, we describe an alternative circuit design methodology when considering trade-offs between accuracy, performance and silicon area. We compare two different approaches that could trade accuracy for performance. One is the traditional approach where the precision used in the datapath is limited to meet a target latency. The other is a proposed new approach which simply allows the datapath to operate without timing closure. We demonstrate analytically and experimentally that for many applications it would be preferable to simply overclock the design and accept that timing violations may arise. Since the errors introduced by timing violations occur rarely, they will cause less noise than quantisation errors. Furthermore, we show that conventional forms of computer arithmetic do not fail gracefully when pushed beyond the deterministic clocking region. In this thesis we take a fresh look at Online Arithmetic, originally proposed for digit serial operation, and synthesize unrolled digit parallel online arithmetic operators to allow for graceful degradation. We quantify the impact of timing violations on key arithmetic primitives, and show that substantial performance benefits can be obtained in comparison to binary arithmetic. Since timing errors are caused by long carry chains, these result in errors in least significant digits with online arithmetic, causing less impact than conventional implementations.Open Acces

    Energy efficient hardware acceleration of multimedia processing tools

    Get PDF
    The world of mobile devices is experiencing an ongoing trend of feature enhancement and generalpurpose multimedia platform convergence. This trend poses many grand challenges, the most pressing being their limited battery life as a consequence of delivering computationally demanding features. The envisaged mobile application features can be considered to be accelerated by a set of underpinning hardware blocks Based on the survey that this thesis presents on modem video compression standards and their associated enabling technologies, it is concluded that tight energy and throughput constraints can still be effectively tackled at algorithmic level in order to design re-usable optimised hardware acceleration cores. To prove these conclusions, the work m this thesis is focused on two of the basic enabling technologies that support mobile video applications, namely the Shape Adaptive Discrete Cosine Transform (SA-DCT) and its inverse, the SA-IDCT. The hardware architectures presented in this work have been designed with energy efficiency in mind. This goal is achieved by employing high level techniques such as redundant computation elimination, parallelism and low switching computation structures. Both architectures compare favourably against the relevant pnor art in the literature. The SA-DCT/IDCT technologies are instances of a more general computation - namely, both are Constant Matrix Multiplication (CMM) operations. Thus, this thesis also proposes an algorithm for the efficient hardware design of any general CMM-based enabling technology. The proposed algorithm leverages the effective solution search capability of genetic programming. A bonus feature of the proposed modelling approach is that it is further amenable to hardware acceleration. Another bonus feature is an early exit mechanism that achieves large search space reductions .Results show an improvement on state of the art algorithms with future potential for even greater savings

    An on-line approach for evaluating trigonometric functions

    Get PDF
    This thesis investigates the evaluation of trigonometric functions based on an on-line arithmetic approach. On-line algorithms have been developed to evaluate the sine and cosine functions. Error analysis and heuristics are carried out to arrive at a minimal error algorithm based on the series expansion of the sine and cosine function. A logical design based on the algorithm is presented where the unit is designed as a set of basic modules. A detailed bit slice design of each module is also presented. A simulator was designed as an experimental tool for synthesis of the on-line algorithms, and a tool for performance evaluation

    Novel arithmetic implementations using cellular neural network arrays.

    Get PDF
    The primary goal of this research is to explore the use of arrays of analog self-synchronized cells---the cellular neural network (CNN) paradigm---in the implementation of novel digital arithmetic architectures. In exploring this paradigm we also discover that the implementation of these CNN arrays produces very low system noise; that is, noise generated by the rapid switching of current through power supply die connections---so called di/dt noise. With the migration to sub 100 nanometer process technology, signal integrity is becoming a critical issue when integrating analog and digital components onto the same chip, and so the CNN architectural paradigm offers a potential solution to this problem. A typical example is the replacement of conventional digital circuitry adjacent to sensitive bio-sensors in a SoC Bio-Platform. The focus of this research is therefore to discover novel approaches to building low-noise digital arithmetic circuits using analog cellular neural networks, essentially implementing asynchronous digital logic but with the same circuit components as used in analog circuit design. We address our exploration by first improving upon previous research into CNN binary arithmetic arrays. The second phase of our research introduces a logical extension of the binary arithmetic method to implement binary signed-digit (BSD) arithmetic. To this end, a new class of CNNs that has three stable states is introduced, and is used to implement arithmetic circuits that use binary inputs and outputs but internally uses the BSD number representation. Finally, we develop CNN arrays for a 2-dimensional number representation (the Double-base Number System - DBNS). A novel adder architecture is described in detail, that performs the addition as well as reducing the representation for further processing; the design incorporates an innovative self-programmable array. Extensive simulations have shown that our new architectures can reduce system noise by almost 70dB and crosstalk by more than 23dB over standard digital implementations.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .I27. Source: Dissertation Abstracts International, Volume: 66-11, Section: B, page: 6159. Thesis (Ph.D.)--University of Windsor (Canada), 2005
    corecore