8,891 research outputs found

    Incorporating prior financial domain knowledge into neural networks for implied volatility surface prediction

    Full text link
    In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.Comment: 8 pages, SIGKDD 202

    Pricing European and American Options under Heston Model using Discontinuous Galerkin Finite Elements

    Full text link
    This paper deals with pricing of European and American options, when the underlying asset price follows Heston model, via the interior penalty discontinuous Galerkin finite element method (dGFEM). The advantages of dGFEM space discretization with Rannacher smoothing as time integrator with nonsmooth initial and boundary conditions are illustrated for European vanilla options, digital call and American put options. The convection dominated Heston model for vanishing volatility is efficiently solved utilizing the adaptive dGFEM. For fast solution of the linear complementary problem of the American options, a projected successive over relaxation (PSOR) method is developed with the norm preconditioned dGFEM. We show the efficiency and accuracy of dGFEM for option pricing by conducting comparison analysis with other methods and numerical experiments

    The valuation of clean spread options: linking electricity, emissions and fuels

    Get PDF
    The purpose of the paper is to present a new pricing method for clean spread options, and to illustrate its main features on a set of numerical examples produced by a dedicated computer code. The novelty of the approach is embedded in the use of a structural model as opposed to reduced-form models which fail to capture properly the fundamental dependencies between the economic factors entering the production process

    Volatility and dividend risk in perpetual American options

    Get PDF
    American options are financial instruments that can be exercised at any time before expiration. In this paper we study the problem of pricing this kind of derivatives within a framework in which some of the properties --volatility and dividend policy-- of the underlaying stock can change at a random instant of time, but in such a way that we can forecast their final values. Under this assumption we can model actual market conditions because some of the most relevant facts that may potentially affect a firm will entail sharp predictable effects. We will analyse the consequences of this potential risk on perpetual American derivatives, a topic connected with a wide class of recurrent problems in physics: holders of American options must look for the fair price and the optimal exercise strategy at once, a typical question of free absorbing boundaries. We present explicit solutions to the most common contract specifications and derive analytical expressions concerning the mean and higher moments of the exercise time.Comment: 21 pages, 5 figures, iopart, submitted for publication; deep revision, two new appendice

    Model Dependency of the Digital Option Replication – Replication under an Incomplete Model (in English)

    Get PDF
    The paper focuses on the replication of digital options under an incomplete model. Digital options are regularly applied in the hedging and static decomposition of many path-dependent options. The author examines the performance of static and dynamic replication. He considers the case of a market agent for whom the right model of the underlying asset-price evolution is not available. The observed price dynamic is supposed to follow four distinct models: (i) the Black and Scholes model, (ii) the Black and Scholes model with stochastic volatility driven by Hull and White model, (iii) the variance gamma model, defined as time changed Brownian motion, and (iv) the variance gamma model set in a stochastic environment modelled as the rate of time change via a Cox-Ingersoll-Ross model. Both static and dynamic replication methods are applied and examined within each of these settings. The author verifies the independence of the static replication on underlying processes.digital options, dynamic and static replication, internal time, Lévy models, replication error, stochastic environment, stochastic volatility, variance gamma process

    Numerical methods for Lévy processes

    Get PDF
    We survey the use and limitations of some numerical methods for pricing derivative contracts in multidimensional geometric Lévy model

    General Purpose Technologies "Engines of Growth?"

    Get PDF
    Whole eras of technical progress and economic growth appear to be driven by a few key technologies, which we call General Purpose Technologies (GPT's). Thus the steam engine and the electric motor may have played such a role in the past, whereas semiconductors and computers may be doing as much in our era. GPT's are characterized by pervasiveness (they are used as inputs by many downstream sectors), inherent potential for technical improvements, and innovational complementarities', meaning that the productivity of R&D in downstream sectors increases as a consequence of innovation in the GPT. Thus, as GPT's improve they spread throughout the economy, bringing about generalized productivity gains. Our analysis shows that the characteristics of GPT's imply a sort of increasing returns to scale phenomenon, and that this may have a large role to play in determining the rate of technical advance; on the other hand this phenomenon makes it difficult for a decentralized economy to fully exploit the growth opportunities offered by evolving GPT's. In particular; if the relationship between the GPT and its users is limited to arms-length market transactions, there will be "too little, too late" innovation in both sectors. Likewise, difficulties in forecasting the technological developments of the other side may lower the rate of technical advance of all sectors. Lastly, we show that the analysis of GPT's has testable implications in the context of R&D and productivity equations, that can in principle be estimated.

    Pricing of the European Options by Spectral Theory

    Get PDF
    We discuss the efficiency of the spectral method for computing the value of the European Call Options, which is based upon the Fourier series expansion. We propose a simple approach for computing accurate estimates. We consider the general case, in which the volatility is time dependent, but it is immediate extend our methodology at the case of constant volatility. The advantage to write the arbitrage price of the European Call Options as Fourier series, is matter of computation complexity. Infact, the methods used to evaluate options of this kind have a high value of computation complexity, furthermore, them have not the capacity to manage it. We can define, by an easy analytical relation, the computation complexity of the problem in the framework of general theory of the ”Function Analysis”, called The Spectral Theory.Options Pricing, Computation Complexity.
    corecore