15,310 research outputs found

    Digital computation of the fractional fourier transform

    Get PDF
    An algorithm for efficient and accurate computation of the fractional Fourier transform is given. For signals with time-bandwidth product N, the presented algorithm computes the fractional transform in O(JVlogjY) time. A definition for the discrete fractional Fourier transform that emerges from our analysis is also discussed. © 1996 IEEE

    The fractional orthogonal derivative

    Full text link
    This paper builds on the notion of the so-called orthogonal derivative, where an n-th order derivative is approximated by an integral involving an orthogonal polynomial of degree n. This notion was reviewed in great detail in a paper in J. Approx. Theory (2012) by the author and Koornwinder. Here an approximation of the Weyl or Riemann-Liouville fractional derivative is considered by replacing the n-th derivative by its approximation in the formula for the fractional derivative. In the case of, for instance, Jacobi polynomials an explicit formula for the kernel of this approximate fractional derivative can be given. Next we consider the fractional derivative as a filter and compute the transfer function in the continuous case for the Jacobi polynomials and in the discrete case for the Hahn polynomials. The transfer function in the Jacobi case is a confluent hypergeometric function. A different approach is discussed which starts with this explicit transfer function and then obtains the approximate fractional derivative by taking the inverse Fourier transform. The theory is finally illustrated with an application of a fractional differentiating filter. In particular, graphs are presented of the absolute value of the modulus of the transfer function. These make clear that for a good insight in the behavior of a fractional differentiating filter one has to look for the modulus of its transfer function in a log-log plot, rather than for plots in the time domain.Comment: 32 pages, 7 figures. The section between formula (4.15) and (4.20) is correcte

    A recursive scheme for computing autocorrelation functions of decimated complex wavelet subbands

    Get PDF
    This paper deals with the problem of the exact computation of the autocorrelation function of a real or complex discrete wavelet subband of a signal, when the autocorrelation function (or Power Spectral Density, PSD) of the signal in the time domain (or spatial domain) is either known or estimated using a separate technique. The solution to this problem allows us to couple time domain noise estimation techniques to wavelet domain denoising algorithms, which is crucial for the development of blind wavelet-based denoising techniques. Specifically, we investigate the Dual-Tree complex wavelet transform (DT-CWT), which has a good directional selectivity in 2-D and 3-D, is approximately shift-invariant, and yields better denoising results than a discrete wavelet transform (DWT). The proposed scheme gives an analytical relationship between the PSD of the input signal/image and the PSD of each individual real/complex wavelet subband which is very useful for future developments. We also show that a more general technique, that relies on Monte-Carlo simulations, requires a large number of input samples for a reliable estimate, while the proposed technique does not suffer from this problem
    • …
    corecore