811 research outputs found

    A novel semi-fragile forensic watermarking scheme for remote sensing images

    Get PDF
    Peer-reviewedA semi-fragile watermarking scheme for multiple band images is presented. We propose to embed a mark into remote sensing images applying a tree structured vector quantization approach to the pixel signatures, instead of processing each band separately. The signature of themmultispectral or hyperspectral image is used to embed the mark in it order to detect any significant modification of the original image. The image is segmented into threedimensional blocks and a tree structured vector quantizer is built for each block. These trees are manipulated using an iterative algorithm until the resulting block satisfies a required criterion which establishes the embedded mark. The method is shown to be able to preserve the mark under lossy compression (above a given threshold) but, at the same time, it detects possibly forged blocks and their position in the whole image.Se presenta un esquema de marcas de agua semi-frágiles para múltiples imágenes de banda. Proponemos incorporar una marca en imágenes de detección remota, aplicando un enfoque de cuantización del vector de árbol estructurado con las definiciones de píxel, en lugar de procesar cada banda por separado. La firma de la imagen hiperespectral se utiliza para insertar la marca en el mismo orden para detectar cualquier modificación significativa de la imagen original. La imagen es segmentada en bloques tridimensionales y un cuantificador de vector de estructura de árbol se construye para cada bloque. Estos árboles son manipulados utilizando un algoritmo iteractivo hasta que el bloque resultante satisface un criterio necesario que establece la marca incrustada. El método se muestra para poder preservar la marca bajo compresión con pérdida (por encima de un umbral establecido) pero, al mismo tiempo, detecta posiblemente bloques forjados y su posición en la imagen entera.Es presenta un esquema de marques d'aigua semi-fràgils per a múltiples imatges de banda. Proposem incorporar una marca en imatges de detecció remota, aplicant un enfocament de quantització del vector d'arbre estructurat amb les definicions de píxel, en lloc de processar cada banda per separat. La signatura de la imatge hiperespectral s'utilitza per inserir la marca en el mateix ordre per detectar qualsevol modificació significativa de la imatge original. La imatge és segmentada en blocs tridimensionals i un quantificador de vector d'estructura d'arbre es construeix per a cada bloc. Aquests arbres són manipulats utilitzant un algoritme iteractiu fins que el bloc resultant satisfà un criteri necessari que estableix la marca incrustada. El mètode es mostra per poder preservar la marca sota compressió amb pèrdua (per sobre d'un llindar establert) però, al mateix temps, detecta possiblement blocs forjats i la seva posició en la imatge sencera

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Audio watermarking using transformation techniques

    Get PDF
    Watermarking is a technique, which is used in protecting digital information like images, videos and audio as it provides copyrights and ownership. Audio watermarking is more challenging than image watermarking due to the dynamic supremacy of hearing capacity over the visual field. This thesis attempts to solve the quantization based audio watermarking technique based on both the Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). The underlying system involves the statistical characteristics of the signal. This study considers different wavelet filters and quantization techniques. A comparison is performed on diverge algorithms and audio signals to help examine the performance of the proposed method. The embedded watermark is a binary image and different encryption techniques such as Arnold Transform and Linear Feedback Shift Register (LFSR) are considered. The watermark is distributed uniformly in the areas of low frequencies i.e., high energy, which increases the robustness of the watermark. Further, spreading of watermark throughout the audio signal makes the technique robust against desynchronized attacks. Experimental results show that the signals generated by the proposed algorithm are inaudible and robust against signal processing techniques such as quantization, compression and resampling. We use Matlab (version 2009b) to implement the algorithms discussed in this thesis. Audio transformation techniques for compression in Linux (Ubuntu 9.10) are applied on the signal to simulate the attacks such as re-sampling, re-quantization, and mp3 compression; whereas, Matlab program for de-synchronized attacks like jittering and cropping. We envision that the proposed algorithm may work as a tool for securing intellectual properties of the musicians and audio distribution companies because of its high robustness and imperceptibility

    Data hiding in images based on fractal modulation and diversity combining

    Get PDF
    The current work provides a new data-embedding infrastructure based on fractal modulation. The embedding problem is tackled from a communications point of view. The data to be embedded becomes the signal to be transmitted through a watermark channel. The channel could be the image itself or some manipulation of the image. The image self noise and noise due to attacks are the two sources of noise in this paradigm. At the receiver, the image self noise has to be suppressed, while noise due to the attacks may sometimes be predicted and inverted. The concepts of fractal modulation and deterministic self-similar signals are extended to 2-dimensional images. These novel techniques are used to build a deterministic bi-homogenous watermark signal that embodies the binary data to be embedded. The binary data to be embedded, is repeated and scaled with different amplitudes at each level and is used as the wavelet decomposition pyramid. The binary data is appended with special marking data, which is used during demodulation, to identify and correct unreliable or distorted blocks of wavelet coefficients. This specially constructed pyramid is inverted using the inverse discrete wavelet transform to obtain the self-similar watermark signal. In the data embedding stage, the well-established linear additive technique is used to add the watermark signal to the cover image, to generate the watermarked (stego) image. Data extraction from a potential stego image is done using diversity combining. Neither the original image nor the original binary sequence (or watermark signal) is required during the extraction. A prediction of the original image is obtained using a cross-shaped window and is used to suppress the image self noise in the potential stego image. The resulting signal is then decomposed using the discrete wavelet transform. The number of levels and the wavelet used are the same as those used in the watermark signal generation stage. A thresholding process similar to wavelet de-noising is used to identify whether a particular coefficient is reliable or not. A decision is made as to whether a block is reliable or not based on the marking data present in each block and sometimes corrections are applied to the blocks. Finally the selected blocks are combined based on the diversity combining strategy to extract the embedded binary data

    Robust Object-Based Watermarking Using SURF Feature Matching and DFT Domain

    Get PDF
    In this paper we propose a robust object-based watermarking method, in which the watermark is embedded into the middle frequencies band of the Discrete Fourier Transform (DFT) magnitude of the selected object region, altogether with the Speeded Up Robust Feature (SURF) algorithm to allow the correct watermark detection, even if the watermarked image has been distorted. To recognize the selected object region after geometric distortions, during the embedding process the SURF features are estimated and stored in advance to be used during the detection process. In the detection stage, the SURF features of the distorted image are estimated and match them with the stored ones. From the matching result, SURF features are used to compute the Affine-transformation parameters and the object region is recovered. The quality of the watermarked image is measured using the Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and the Visual Information Fidelity (VIF). The experimental results show the proposed method provides robustness against several geometric distortions, signal processing operations and combined distortions. The receiver operating characteristics (ROC) curves also show the desirable detection performance of the proposed method. The comparison with a previously reported methods based on different techniques is also provided

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    Theoretical Analysis of Information Watermarking in Wavelet-Based Video Compression

    Get PDF
    Embedding audio bits into images for transmission of video data alleviates the synchronization problem common in video transmission techniques. We continue work combining audio or other information bits and images into one file using digital watermarking techniques to correct the synchronization problem. The system compresses the file by using wavelet image coefficients and implementing bit plane coding. Our research encompasses incorporating five free variables into the watermark/compression technique. These variables are watermark robustness, number of coding iterations, number of image coefficients, number of watermarked information bits, and number of watermarked error correcting bits. By altering these variables, four measurements of the output change. The measurements are the information bit error rate, the image quality, the bit rate, and the amount of watermarked data. We theoretically demonstrate how the variables impact these measurements. Experimental results on real video data support our theoretical findings. By analyzing each video frame, an automated system is able to choose optimal values of the five variables to meet 5 specified measurement constraints
    corecore