449 research outputs found

    Digital Watermarking for Verification of Perception-based Integrity of Audio Data

    Get PDF
    In certain application fields digital audio recordings contain sensitive content. Examples are historical archival material in public archives that preserve our cultural heritage, or digital evidence in the context of law enforcement and civil proceedings. Because of the powerful capabilities of modern editing tools for multimedia such material is vulnerable to doctoring of the content and forgery of its origin with malicious intent. Also inadvertent data modification and mistaken origin can be caused by human error. Hence, the credibility and provenience in terms of an unadulterated and genuine state of such audio content and the confidence about its origin are critical factors. To address this issue, this PhD thesis proposes a mechanism for verifying the integrity and authenticity of digital sound recordings. It is designed and implemented to be insensitive to common post-processing operations of the audio data that influence the subjective acoustic perception only marginally (if at all). Examples of such operations include lossy compression that maintains a high sound quality of the audio media, or lossless format conversions. It is the objective to avoid de facto false alarms that would be expectedly observable in standard crypto-based authentication protocols in the presence of these legitimate post-processing. For achieving this, a feasible combination of the techniques of digital watermarking and audio-specific hashing is investigated. At first, a suitable secret-key dependent audio hashing algorithm is developed. It incorporates and enhances so-called audio fingerprinting technology from the state of the art in contentbased audio identification. The presented algorithm (denoted as ”rMAC” message authentication code) allows ”perception-based” verification of integrity. This means classifying integrity breaches as such not before they become audible. As another objective, this rMAC is embedded and stored silently inside the audio media by means of audio watermarking technology. This approach allows maintaining the authentication code across the above-mentioned admissible post-processing operations and making it available for integrity verification at a later date. For this, an existent secret-key ependent audio watermarking algorithm is used and enhanced in this thesis work. To some extent, the dependency of the rMAC and of the watermarking processing from a secret key also allows authenticating the origin of a protected audio. To elaborate on this security aspect, this work also estimates the brute-force efforts of an adversary attacking this combined rMAC-watermarking approach. The experimental results show that the proposed method provides a good distinction and classification performance of authentic versus doctored audio content. It also allows the temporal localization of audible data modification within a protected audio file. The experimental evaluation finally provides recommendations about technical configuration settings of the combined watermarking-hashing approach. Beyond the main topic of perception-based data integrity and data authenticity for audio, this PhD work provides new general findings in the fields of audio fingerprinting and digital watermarking. The main contributions of this PhD were published and presented mainly at conferences about multimedia security. These publications were cited by a number of other authors and hence had some impact on their works

    SecMon: End-to-End Quality and Security Monitoring System

    Get PDF
    The Voice over Internet Protocol (VoIP) is becoming a more available and popular way of communicating for Internet users. This also applies to Peer-to-Peer (P2P) systems and merging these two have already proven to be successful (e.g. Skype). Even the existing standards of VoIP provide an assurance of security and Quality of Service (QoS), however, these features are usually optional and supported by limited number of implementations. As a result, the lack of mandatory and widely applicable QoS and security guaranties makes the contemporary VoIP systems vulnerable to attacks and network disturbances. In this paper we are facing these issues and propose the SecMon system, which simultaneously provides a lightweight security mechanism and improves quality parameters of the call. SecMon is intended specially for VoIP service over P2P networks and its main advantage is that it provides authentication, data integrity services, adaptive QoS and (D)DoS attack detection. Moreover, the SecMon approach represents a low-bandwidth consumption solution that is transparent to the users and possesses a self-organizing capability. The above-mentioned features are accomplished mainly by utilizing two information hiding techniques: digital audio watermarking and network steganography. These techniques are used to create covert channels that serve as transport channels for lightweight QoS measurement's results. Furthermore, these metrics are aggregated in a reputation system that enables best route path selection in the P2P network. The reputation system helps also to mitigate (D)DoS attacks, maximize performance and increase transmission efficiency in the network.Comment: Paper was presented at 7th international conference IBIZA 2008: On Computer Science - Research And Applications, Poland, Kazimierz Dolny 31.01-2.02 2008; 14 pages, 5 figure

    Data Aggregation and Privacy Preserving Using Computational Intelligence

    Get PDF

    SecMon: end-to-end quality and security monitoring system

    Get PDF
    The Voice over Internet Protocol (VoIP) is becoming a more available and popular way of communication for the Internet users. This also applies to the Peer-to-Peer (P2P) systems and merging these two have already proven to be successful (e.g. Skype). Even the existing standards of VoIP provide an assurance of security and Quality of Service (QoS), however, these features are usually optional and supported by a limited number of implementations. As a result, the lack of mandatory and widely applicable QoS and security guarantee makes the contemporary VoIP systems vulnerable to attacks and network disturbances. In this paper we are facing these issues and propose the SecMon system, which simultaneously provides a lightweight security mechanism and improves quality parameters of the call. SecMon is intended specially for VoIP service over P2P networks and its main advantage is that it provides authentication, data integrity services, adaptive QoS and (D)DoS attack detection. Moreover, the SecMon approach represents a lowbandwidth consumption solution that is transparent to the users and possesses a self-organizing capability. The above-mentioned features are accomplished mainly by utilizing two information hiding techniques: digital audio watermarking and network steganography. These techniques are used to create covert channels that serve as transport channels for lightweight QoS measurement results. Furthermore, these metrics are aggregated in a reputation system that enables best route path selection in the P2P network. The reputation system helps also to mitigate (D)DoS attacks, maximize performance and increase transmission efficiency in the network

    A review and open issues of diverse text watermarking techniques in spatial domain

    Get PDF
    Nowadays, information hiding is becoming a helpful technique and fetches more attention due to the fast growth of using the internet; it is applied for sending secret information by using different techniques. Watermarking is one of major important technique in information hiding. Watermarking is of hiding secret data into a carrier media to provide the privacy and integrity of information so that no one can recognize and detect it's accepted the sender and receiver. In watermarking, many various carrier formats can be used such as an image, video, audio, and text. The text is most popular used as a carrier files due to its frequency on the internet. There are many techniques variables for the text watermarking; each one has its own robust and susceptible points. In this study, we conducted a review of text watermarking in the spatial domain to explore the term text watermarking by reviewing, collecting, synthesizing and analyze the challenges of different studies which related to this area published from 2013 to 2018. The aims of this paper are to provide an overview of text watermarking and comparison between approved studies as discussed according to the Arabic text characters, payload capacity, Imperceptibility, authentication, and embedding technique to open important research issues in the future work to obtain a robust method

    An Enhanced Approach of Image Steganographic Using Discrete Shearlet Transform and Secret Sharing

    Get PDF
                   في الآونة الأخيرة، جعل الإنترنت المستخدمين قادرين على نقل الوسائط الرقمية بطريقة أسهل. على الرغم من هذه السهولة للإنترنت، إلا أنه قد تؤدي إلى العديد من التهديدات التي تتعلق بسرية محتويات الوسائط المنقولة مثل مصادقة الوسائط والتحقق من تكاملها. لهذه الأسباب ، يتم استخدام أساليب إخفاء البيانات والتشفير لحماية محتويات الوسائط الرقمية. في هذه الورقة البحثية ، تم اقتراح طريقة معززة لإخفاء المعلومات بالصور مع التشفير المرئي. يتم تشفير الشعار السري (صورة ثنائية) بالحجم (128 × 128) عن طريق تطبيق التشفير البصري (2 out 2 share) لتوليد مشاركتين سريتين. أثناء عملية التضمين ، يتم تقسيم الصورة غطاء RGB بحجم (512 × 512) إلى ثلاث طبقات (الأحمر والأخضر والأزرق). يتم تحويل الطبقة الزرقاء باستخدام التحويل Shearlet المتقطع للحصول على معاملاتها. يتم تضمين المشاركة السرية الأولى في معاملات الطبقة الزرقاء المحولة للحصول على صورة الاخفاء. في عملية الاستخراج ، يتم استخراج المشاركة السرية الأولى من معاملات الطبقة الزرقاء لصورة الاخفاء وثم يتم تطبيق عملية XOR عليها مع المشاركة السرية الثانية لإنشاء الشعار السري الأصلي. وفقًا للنتائج التجريبية ، فإن الطريقة المقترحة قد حققت افضل نسبة من عدم الوضوح لصورة الاخفاء بقدرة الحمولة الصافية تساوي (1 bpp). أصبح الشعار السري أكثر أمانًا باستخدام التشفير المرئي (2 out 2 share)  والمشاركة السرية الثانية كمفتاح خاص ايضاً.  Recently, the internet has made the users able to transmit the digital media in the easiest manner. In spite of this facility of the internet, this may lead to several threats that are concerned with confidentiality of transferred media contents such as media authentication and integrity verification. For these reasons, data hiding methods and cryptography are used to protect the contents of digital media. In this paper, an enhanced method of image steganography combined with visual cryptography has been proposed. A secret logo (binary image) of size (128x128) is encrypted by applying (2 out 2 share) visual cryptography on it to generate two secret share. During the embedding process, a cover red, green, and blue (RGB) image of size (512x512) is divided into three layers (red, green and blue). The blue layer is transformed using Discrete Shearlet Transform (DST) to obtain its coefficients. The first secret share is embedded at the coefficients of transformed blue layer to obtain a stego image. At extraction process, the first secret share is extracted from the coefficients of blue layer of the stego image and XORed with the second secret share to generate the original secret logo. According to the experimental results, the proposed method is achieved better imperceptibility for the stego image with the payload capacity equal to (1 bpp). In addition, the secret logo becomes more secured using (2 out 2 share) visual cryptography and the second secret share as a private key
    corecore