26,056 research outputs found

    Strain monitoring of tapestries: results of a three-year research project

    Get PDF
    The outcomes of an interdisciplinary research project between conservators and engineers investigating the strain experienced by different areas of a tapestry are described. Two techniques were used: full-field monitoring using digital image correlation (DIC) and point measurements using optical fibre sensors. Results showed that it is possible to quantify the global strain across a discrete area of a tapestry using DIC; optical fibre and other sensors were used to validate the DIC. Strain maps created by the DIC depict areas of high and low strain and can be overlaid on images of the tapestry, creating a useful visual tool for conservators, custodians and the general public. DIC identifies areas of high strain not obvious to the naked eye. The equipment can be used in situ in a historic house. In addition the work demonstrated the close relationship between relative humidity and strain

    Progress in strain monitoring of tapestries

    No full text
    This paper reports interdisciplinary research between conservators and engineers designed to enhance the long-term conservation of tapestries (tapestry-weave hangings) on longterm display. The aim is to monitor, measure and document the strain experienced by different areas of a tapestry while it is hanging on display. Initial research has established that damage can be identified in the early stages of its inception, i.e., before it is visible to the naked eye. The paper also reports initial results of strain data visualisation that allows curators and conservators to examine how strain develops, thereby facilitating predictions about the changes in the form or condition of the tapestry. Strain data visualisation also allows the strain process to be recorded, thereby facilitating the effective documentation of display methods and conservation interventions. The paper reports the use of point measurements (using silica optical fibre sensors) and full-field monitoring (using 3-D photogrammetry with digital image correlation (DIC))

    Quantifying and visualising change: strain monitoring of tapestries with digital image correlation

    Get PDF
    A three-year research project at the University of Southampton (2007–2010) investigated whether monitoring techniques commonly used by engineers to assess the strength and durability of materials could be usefully applied to inform the condition assessment of historic tapestries. To date it has not been possible to obtain an objective picture of the overall condition of a tapestry; the study investigated whether it is possible to identify precursors of structural damage. The two techniques, digital image correlation (DIC) and optical fibre sensors, were used to monitor a representative wool fabric, specially woven tapestry samples, a newly woven tapestry, and historic tapestries, both in the laboratory and in situ in a historic house. This study first sets out to answer the question: can DIC be used to monitor and visualize strain in historic tapestries? It is shown that DIC can be used successfully. Secondly, it discusses the map function, a novel development which allowed the monitoring equipment to be moved, so that it could be used in situ in a historic house. Thirdly, it provides further details of the experimental work using optical fibre sensors to confirm the accuracy of the DIC technique

    Long term condition monitoring of tapestries using image correlation

    Get PDF
    Digital Image Correlation (DIC) is used to extract non-contact full-field three-dimensional displacement and in-plane strains from an historic tapestries. A DIC-based approach is devised that allows the effect of RH variations on a tapestry to be quantified. A historical tapestry has been monitored in a closely controlled environment and in the natural environment. The results revealed that very small variations in RH can have significant effects on strain. An automated long term monitoring approach has been devised to allow strain data to be extracted in real time from tapestries in remote locations. The results show that DIC provides better understanding of the effect of RH fluctuations on strain which will ultimately lead to more insight into the degradation process of historical tapestries. The paper demonstrates the potential for using DIC as a condition monitoring tool

    Development of a Personal and Non-Pictorial Style in Contemporary Tapestry

    Get PDF
    Some contemporary American tapestry weavers are working in a style that deliberately breaks the link with centuries of European tapestry weaving, which most often aims to be representational or pictorial in content. While a great number of remarkable works by contemporary tapestry artists are produced in this pictorial manner and are well worth consideration and commendation, a strong case can be made for more abstract imagery. The few American tapestry weavers who consciously break from the linkage to European style have developed styles that may be said to be more American, than from other influences. By examining my own work and that of related artists, the paper will discuss how this evolution has taken place. This will include examination of influences that have driven the development of a way of working that is separate from historical tapestry imagery. Time will be spent in showing how connections to historical textiles (such as kimono, tribal rugs, Navaho and Andean textiles) are often addressed and incorporated into the tapestries. Likewise, examples of how political and social issues can be embodied, within the framework of abstract imagery, or at least imagery that is more geometric than representational. Having developed the practice of designing tapestry on the computer screen, analogies between digital and tactile are often drawn, not dissimilar to the grid of the loom. Rather than suggesting this way of working should replace European style tapestry, it is offered as an alternative to broaden the options of artistic expression

    Mechanical properties of wool and cotton yarns used in twenty-first century tapestry: preparing for the future by understanding the present

    Get PDF
    The conservation of historic tapestries is a complex and highly skilled task. Tapestries now being woven will need conservation in years to come. Can we, by understanding the properties of these contemporary works, assist the conservators of the future? The recreation of the Hunt of the Unicorn tapestries being undertaken by the West Dean Tapestry Studio offers a unique opportunity to access the materials being used and to create a body of data on their initial properties. This study uses tensile testing of the warp and weft materials to determine their maximum load at break, extension at maximum load, and specific stress (tenacity). Wool weft yarns from two different sources and of two thicknesses were examined. These wools were dyed ‘in house’ and the effect of the different dyes used was also assessed. These parameters all showed some significant (P < 0.05) differences. Cotton warp yarns of differing thickness and a gold thread were also tested. The comparison of how cotton and wool break demonstrates that when a tapestry is put under sufficient stress the cotton will snap but the wool may only stretch. However, this could often be beyond its recovery range resulting in a failure to return to shape

    Evaluating the use of digital image correlation for strain measurement in historic tapestries using representative deformation fields

    Get PDF
    An analysis technique to assess the viability of digital image correlation (DIC) in tracking the full‐field strains across the surface of hanging historic tapestries is presented. Measurement uncertainty related to the use of the inherent tapestry image in tracking displacements is investigated through use of “synthetic” deformation fields. The latter are generated by mapping the details of a given tapestry image into finite element analyses. The combination of self‐weight loading, material non‐linearity, and image specific heterogeneity (related to slit stitching, damage, and patch‐restorations) serve to generate a bespoke deformation field complex enough to assess the reliability of DIC measurements. Accuracy is evaluated by comparing measured results with the original known deformations. The technique demonstrates that the optimum imaging settings and the choice of subset size for DIC analysis are strongly influenced by the tapestry image and the goal of the measurement, they are found using a compromise between conflicting objectives: minimising measurement error while maximising resolution

    Risk of climate-induced damage in historical textiles

    Get PDF
    Eleven wool and silk historic textiles and two modern artist's canvases were examined to determine their water vapour adsorption, moisture dimensional response and tensile behaviour. All the textiles showed a similar general pattern of moisture response. A rise in ambient relative humidity (RH) from dry conditions produced expansion of a textile until a certain critical RH level after which a contraction occurred to a greater or lesser degree depending on the yarn crimp and the weave geometry. The largest expansion recorded between the dry state and 80% RH was 1.2 and 0.9% for wool and silk textiles, respectively. The largest shrinkage of 0.8% at high RH range was experienced by a modern linen canvas. Two potential damage mechanisms related to the moisture response of the textiles—stress building as a result of shrinkage of the textile restrained in its dimensional response and the fretting fatigue when yarns move with friction one against another—were found insignificant in typical textile display environments unless the textiles are severely degraded or excessively strained in their mounting

    The Crescent Student Newspaper, October 22, 1993

    Full text link
    Student newspaper of George Fox College (later George Fox University). 4 pages, black and white.https://digitalcommons.georgefox.edu/the_crescent/2093/thumbnail.jp
    • 

    corecore