581 research outputs found

    ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm

    Full text link
    Multivariate problems are typically governed by anisotropic features such as edges in images. A common bracket of most of the various directional representation systems which have been proposed to deliver sparse approximations of such features is the utilization of parabolic scaling. One prominent example is the shearlet system. Our objective in this paper is three-fold: We firstly develop a digital shearlet theory which is rationally designed in the sense that it is the digitization of the existing shearlet theory for continuous data. This implicates that shearlet theory provides a unified treatment of both the continuum and digital realm. Secondly, we analyze the utilization of pseudo-polar grids and the pseudo-polar Fourier transform for digital implementations of parabolic scaling algorithms. We derive an isometric pseudo-polar Fourier transform by careful weighting of the pseudo-polar grid, allowing exploitation of its adjoint for the inverse transform. This leads to a digital implementation of the shearlet transform; an accompanying Matlab toolbox called ShearLab is provided. And, thirdly, we introduce various quantitative measures for digital parabolic scaling algorithms in general, allowing one to tune parameters and objectively improve the implementation as well as compare different directional transform implementations. The usefulness of such measures is exemplarily demonstrated for the digital shearlet transform.Comment: submitted to SIAM J. Multiscale Model. Simu

    ShearLab 3D: Faithful Digital Shearlet Transforms based on Compactly Supported Shearlets

    Get PDF
    Wavelets and their associated transforms are highly efficient when approximating and analyzing one-dimensional signals. However, multivariate signals such as images or videos typically exhibit curvilinear singularities, which wavelets are provably deficient of sparsely approximating and also of analyzing in the sense of, for instance, detecting their direction. Shearlets are a directional representation system extending the wavelet framework, which overcomes those deficiencies. Similar to wavelets, shearlets allow a faithful implementation and fast associated transforms. In this paper, we will introduce a comprehensive carefully documented software package coined ShearLab 3D (www.ShearLab.org) and discuss its algorithmic details. This package provides MATLAB code for a novel faithful algorithmic realization of the 2D and 3D shearlet transform (and their inverses) associated with compactly supported universal shearlet systems incorporating the option of using CUDA. We will present extensive numerical experiments in 2D and 3D concerning denoising, inpainting, and feature extraction, comparing the performance of ShearLab 3D with similar transform-based algorithms such as curvelets, contourlets, or surfacelets. In the spirit of reproducible reseaerch, all scripts are accessible on www.ShearLab.org.Comment: There is another shearlet software package (http://www.mathematik.uni-kl.de/imagepro/members/haeuser/ffst/) by S. H\"auser and G. Steidl. We will include this in a revisio

    Scale Invariant Interest Points with Shearlets

    Full text link
    Shearlets are a relatively new directional multi-scale framework for signal analysis, which have been shown effective to enhance signal discontinuities such as edges and corners at multiple scales. In this work we address the problem of detecting and describing blob-like features in the shearlets framework. We derive a measure which is very effective for blob detection and closely related to the Laplacian of Gaussian. We demonstrate the measure satisfies the perfect scale invariance property in the continuous case. In the discrete setting, we derive algorithms for blob detection and keypoint description. Finally, we provide qualitative justifications of our findings as well as a quantitative evaluation on benchmark data. We also report an experimental evidence that our method is very suitable to deal with compressed and noisy images, thanks to the sparsity property of shearlets
    corecore