22 research outputs found

    Zipper - a Duplex Method for VDSL based on DMT

    Get PDF
    We present a new duplex scheme, called Zipper, for discrete multitone (DMT)-based very high bit-rate digital subscriber line (VDSL) systems on copper wires. This scheme divides the available bandwidth by assigning different subcarriers for the upstream and downstream directions. It has high flexibility to divide the capacity between the up and downstream, as well as good coexistence possibilities with other systems such as ADSL. Simulation results show the high bit-rate performance in different environments such as mixed ADSL and VDSL traffic under radio frequency interference and with different background noise source

    A rank-reduced LMMSE canceller for narrowband interference suppression in OFDM-based systems

    Full text link

    A Near-Optimal Linear Crosstalk Canceler for Upstream VDSL

    Get PDF
    Crosstalk is the major source of performance degradation in VDSL. Several crosstalk cancelers have been proposed to address this. Unfortunately, they suffer from error propagation, high complexity, and long latency. This paper presents a simple, linear zero-forcing (ZF) crosstalk canceler. This design has a low complexity and no latency and does not suffer from error propagation. Furthermore, due to the well-conditioned structure of the VDSL channel matrix, the ZF design causes negligible noise enhancement. A lower bound on the performance of the linear ZF canceler is derived. This allows performance to be predicted without explicit knowledge of the crosstalk channels, which simplifies service provisioning considerably. This bound shows that the linear ZF canceler operates close to the single-user bound. Therefore, the linear ZF canceler is a low-complexity, low-latency design with predictable near-optimal performance. The combination of spectral optimization and crosstalk cancellation is also considered. Spectra optimization in a multiaccess channel generally involves a complex optimization problem. Since the linear ZF canceler decouples transmission on each line, the spectrum on each modem can be optimized independently, leading to a significant reduction in complexity

    A Near-Optimal Linear Crosstalk Canceler for VDSL

    Get PDF
    Crosstalk is the major source of performance degradation in VDSL. Several crosstalk cancelers have been proposed to address this. Unfortunately they suffer from error propagation, high complexity and long latency. In this paper we present a simple, linear zero forcing (ZF) crosstalk canceler. This design has a low complexity, no latency and does not suffer from error propagation. Furthermore, due to the well conditioned structure of the VDSL channel matrix, the ZF design causes negligible noise enhancement. A lower bound on the performance of the linear ZF canceler is derived. This allows performance to be predicted without explicit knowledge of the crosstalk channels, which simplies service provisioning considerably. This bound shows that the linear ZF canceler operates close to the single user bound. So the linear ZF canceler is a low complexity, low latency design with predictable, near-optimal performance. The combination of spectral optimization and crosstalk cancellation is also considered. Spectra optimization in a multi-access channel generally involves a highly complex optimization problem. Since the linear ZF canceler decouples transmission on each line, the spectrum on each modem can be optimized independently, leading to a signicant reduction in complexity.

    A Near-Optimal Linear Crosstalk Precoder for VDSL

    Get PDF
    Crosstalk is the major source of performance degradation in VDSL. In downstream transmission crosstalk precoding can be applied. The transmitted signal is predistorted, such that the predistortion annihilates with the crosstalk introduced in the binder. Several crosstalk precoders have been proposed. Unfortunately they either give poor performance or require non-linear operations, which results in a high complexity. In this paper we present a simple, linear diagonalizing crosstalk precoder with low run-time complexity. A lower bound on the performance of the DP is derived. This allows performance to be predicted without explicit knowledge of the crosstalk channels, which simplies service provisioning considerably. This bound shows that the DP operates close to the single-user bound. So the DP is a low complexity design with predictable, near-optimal performance. The combination of spectra optimization and crosstalk precoding is also considered. Spectra optimization in a broadcast channel generally involves a highly complex optimization problem. Since the DP decouples transmission on each line, the spectrum on each modem can be optimized through a dual decomposition, leading to a significant reduction in complexity
    corecore