1,182 research outputs found

    The Crossroads of Digital Phenotyping

    Get PDF

    Concept of the Munich/Augsburg Consortium Precision in Mental Health for the German Center of Mental Health

    Get PDF
    The Federal Ministry of Education and Research (BMBF) issued a call for a new nationwide research network on mental disorders, the German Center of Mental Health (DZPG). The Munich/Augsburg consortium was selected to participate as one of six partner sites with its concept “Precision in Mental Health (PriMe): Understanding, predicting, and preventing chronicity.” PriMe bundles interdisciplinary research from the Ludwig-Maximilians-University (LMU), Technical University of Munich (TUM), University of Augsburg (UniA), Helmholtz Center Munich (HMGU), and Max Planck Institute of Psychiatry (MPIP) and has a focus on schizophrenia (SZ), bipolar disorder (BPD), and major depressive disorder (MDD). PriMe takes a longitudinal perspective on these three disorders from the at-risk stage to the first-episode, relapsing, and chronic stages. These disorders pose a major health burden because in up to 50% of patients they cause untreatable residual symptoms, which lead to early social and vocational disability, comorbidities, and excess mortality. PriMe aims at reducing mortality on different levels, e.g., reducing death by psychiatric and somatic comorbidities, and will approach this goal by addressing interdisciplinary and cross-sector approaches across the lifespan. PriMe aims to add a precision medicine framework to the DZPG that will propel deeper understanding, more accurate prediction, and personalized prevention to prevent disease chronicity and mortality across mental illnesses. This framework is structured along the translational chain and will be used by PriMe to innovate the preventive and therapeutic management of SZ, BPD, and MDD from rural to urban areas and from patients in early disease stages to patients with long-term disease courses. Research will build on platforms that include one on model systems, one on the identification and validation of predictive markers, one on the development of novel multimodal treatments, one on the regulation and strengthening of the uptake and dissemination of personalized treatments, and finally one on testing of the clinical effectiveness, utility, and scalability of such personalized treatments. In accordance with the translational chain, PriMe’s expertise includes the ability to integrate understanding of bio-behavioral processes based on innovative models, to translate this knowledge into clinical practice and to promote user participation in mental health research and care

    What is the Current and Future Status of Digital Mental Health Interventions?

    Get PDF
    The prevalence of mental disorders continues to increase, especially with the advent of the COVID-19 pandemic. Although we have evidence-based psychological treatments to address these conditions, most people encounter some barriers to receiving this help (e.g., stigma, geographical or time limitations). Digital mental health interventions (e.g., Internet-based interventions, smartphone apps, mixed realities -virtual and augmented reality) provide an opportunity to improve accessibility to these treatments. This article summarizes the main contributions of the different types of digital mental health solutions. It analyzes their limitations (e.g., drop-out rates, lack of engagement, lack of personalization, lack of cultural adaptations) and showcases the latest sophisticated and innovative technological advances under the umbrella of precision medicine (e.g., digital phenotyping, chatbots, or conversational agents). Finally, future challenges related to the need for real world implementation of these interventions, the use of predictive methodology, and hybrid models of care in clinical practice, among others, are discussed

    Precision medicine in the era of artificial intelligence: implications in chronic disease management.

    Get PDF
    Aberrant metabolism is the root cause of several serious health issues, creating a huge burden to health and leading to diminished life expectancy. A dysregulated metabolism induces the secretion of several molecules which in turn trigger the inflammatory pathway. Inflammation is the natural reaction of the immune system to a variety of stimuli, such as pathogens, damaged cells, and harmful substances. Metabolically triggered inflammation, also called metaflammation or low-grade chronic inflammation, is the consequence of a synergic interaction between the host and the exposome-a combination of environmental drivers, including diet, lifestyle, pollutants and other factors throughout the life span of an individual. Various levels of chronic inflammation are associated with several lifestyle-related diseases such as diabetes, obesity, metabolic associated fatty liver disease (MAFLD), cancers, cardiovascular disorders (CVDs), autoimmune diseases, and chronic lung diseases. Chronic diseases are a growing concern worldwide, placing a heavy burden on individuals, families, governments, and health-care systems. New strategies are needed to empower communities worldwide to prevent and treat these diseases. Precision medicine provides a model for the next generation of lifestyle modification. This will capitalize on the dynamic interaction between an individual's biology, lifestyle, behavior, and environment. The aim of precision medicine is to design and improve diagnosis, therapeutics and prognostication through the use of large complex datasets that incorporate individual gene, function, and environmental variations. The implementation of high-performance computing (HPC) and artificial intelligence (AI) can predict risks with greater accuracy based on available multidimensional clinical and biological datasets. AI-powered precision medicine provides clinicians with an opportunity to specifically tailor early interventions to each individual. In this article, we discuss the strengths and limitations of existing and evolving recent, data-driven technologies, such as AI, in preventing, treating and reversing lifestyle-related diseases

    Black box algorithms in mental health apps: An ethical reflection

    Full text link
    Mental health apps bring unprecedented benefits and risks to individual and public health. A thorough evaluation of these apps involves considering two aspects that are often neglected: the algorithms they deploy and the functions they perform. We focus on mental health apps based on black box algorithms, explore their forms of opacity, discuss the implications derived from their opacity, and propose how to use their outcomes in mental healthcare, self‐care practices, and research. We argue that there is a relevant distinction between functions performed by algorithms in mental health apps, and we focus on the functions of analysis and generation of advice. When performing analytic functions, such as identifying patterns and making predictions concerning people's emotions, thoughts, and behaviors, black box algorithms can be better than other algorithms to provide information to identify early signs of relapse, support diagnostic processes, and improve research by generating outcomes that lead to a better understanding of mental health. However, when carrying out the function of providing mental health advice, black box algorithms have the potential to deliver unforeseen advice that may harm users. We argue that the outcomes of these apps may be trustworthy as a complementary source of information, but express caution about black box algorithms that give advice directly to users. To reap the benefits of mental health apps based on black box algorithms and avoid unintended consequences, we critically need to know whether these algorithms are fulfilling the function of providing mental health advice
    corecore