3,415 research outputs found

    Asset Administration Shell as an interoperable enabler of Industry 4.0 software architectures: a case study

    Get PDF
    In recent years, the discipline of Digital Transformation in manufacturing companies turned out to be a hot topic of research debate, which allowed the design and introduction of new technologies and tools able to exploit the potential of the data produced by the shop floor assets. This increased interest in data generation and management has however highlighted a crucial issue about the lack of standardised models and structures to share these data and ensure interoperability. Among the several concepts proposed by the recent initiatives devoted to solving or mitigating this issue, Asset Administration Shell (AAS) is increasing in popularity, given its potential in providing standardised and modular information about the assets and events represented. This paper deals with a demonstration of the easiness of integration of AAS in pre-existing software architecture, allowing higher flexibility and a better understanding of the ongoing processes: a production line has been indeed entirely represented with modular AAS metamodels and it has been used to feed a Digital Model representing the line configuration. The use case proposed proves the effectiveness of the obtained solution when used for virtual commissioning operations

    Towards Logistics 4.0: A Skill-Based OPC UA Communication between WMS and the PLC of an Automated Storage and Retrieval System

    Get PDF
    In order to bring intralogistics systems to the same level of interoperability as today’s modern production systems, logistics must take the essential steps towards Industry 4.0. This requires an increasing abstraction level of control logic as an enabler for horizontal and vertical integration. The abstraction will lead to the interconnection of manufacturing and logistics control with the production planning and warehouse management systems (WMS). A main enabler for these communication paths are service-oriented architectures (SoA). OPC UA has established itself as a widely used and already adopted SoA-based communication standard in industry. The paper describes the realization of an OPC UA-based approach for the communication between a WMS and a PLC of an automated storage and retrieval system (ASRS). The conceptual basis of communication design are skills of the ASRS. The work is supported by an architectural design with a subsequent prototypical implementation

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2
    • …
    corecore