8 research outputs found

    Research activities of STUK 2005 – 2010

    Get PDF

    Exploring Novel Contrast Agents with Anthropomorphic Mesh Models in MCNP

    Get PDF
    Breast cancer is the leading cancer in women with an estimated 13% of women in the United States developing a form of invasive breast cancer in her lifetime. The survival rate is estimated to be 85%, but the American Cancer Society estimates that early detection of breast cancer in the localized stage increases the breast cancer survival rate to 99%. However, early detection is dependent on the sensitivity of breast imaging techniques and currently, the sensitivity is suboptimal for women with dense breasts and obscure cancers. Recently, studies have indicated that exploring new contrast agents can provide access to improved sensitivity because of their potential to increase the effective Z of the target tissue. Furthermore, contrast-enhanced tomosynthesis is a viable imaging method that can provide a 3D view of the breast while providing tumor enhancement for improved visibility. This project aims to facilitate the search for practical contrast agents that can improve sensitivity during breast imaging. More specifically, the objective of this project is to find novel ways to improve the differentiation between tumor and glandular tissue by creating a realistic anthropomorphic model that not only considers the geometry of the breast but its physiological components as well. This project aims to combine tomosynthesis breast imaging methods with novel contrast agents to explore their efficacy and limitations. To achieve the goals of this project, several techniques are employed. A realistic tomosynthesis environment is created by constructing a detailed Hologic tomosynthesis breast imaging machine, including the source, flat-panel detector, and support equipment, using MCNP. Realistic breast phantoms that consider geometric and biophysical accuracy are created by incorporating a time dependency into the model. Once the contrast agents are incorporated, their efficacy is calculated by quantifying tumor visibility as a function of breast size, density, tumor location, tumor stage, and tumor type. After running simulations, this project will generate clear and accurate radiographs demonstrating the structural components of the breast and the effects of contrast enhancement on any embedded tumors. The results will provide an indication of the contrast agents that provide promise. The data acquired in this project will provide insight on the process of creating an anthropomorphic breast phantom for tomosynthesis studies, as well as insight on setbacks that are identified with the methods used. Contrast-enhanced tomosynthesis is clinically possible and is a promising technique for improving sensitivity. This project explores this technique and provides insight on possible ways to improve breast imaging sensitivity

    Design, development and use of a deformable breast phantom to assess the relationship between thickness and lesion visibility in full field digital mammography

    Get PDF
    Aim of research:This research aimed to design and develop a synthetic anthropomorphic breast phantom with cancer mimicking lesions and use this phantom to assess the relationship between lesion visibility and breast thickness in mammography. Due to the risk of cancer induction associated with the use of ionising radiation on breast tissues, experiments on human breast tissue was not practical. Therefore, a synthetic anthropomorphic breast phantom with cancer mimicking lesions was needed to be designed and developed in order to provide a safe platform to evaluate the relationship between lesion visibility and breast thickness in mammography. Method: As part of this research custom Polyvinyl alcohol (PVAL) breast phantoms with embedded PVAL lesions doped with contrast agent were fabricated and utilised. These breast phantoms exhibited mechanical and X-ray properties which were similar to female breast/breast cancer tissues. In order for this research to be useful for human studies, patient safety factors have constrained the extent of this research. These factors include compression force and radiation dose. After acquiring mammograms of phantoms with varying thicknesses, the image quality of the embedded lesions were evaluated both perceptually and mathematically.The two-alternative forced choice (2AFC) perceptual method was used to evaluate image quality of the lesions. For mathematical evaluation the following methods were utilised: line profile analysis, contrast-to noise ratio (CNR), signal-to noise ratio (SNR) and figure of merit (FOM).Results: The results of the visual perception analysis of the mammograms demonstrate that as breast compressed thickness reduces the image quality increases. Additionally, the results display a correlation in the reduction in the level of noise with the reduction in breast thickness. This noise reduction was also demonstrated in the profile plots of the lesions. The line profile analysis, in agreement with visual perception, shows improvement of sharpness of the lesion edge in relation to the reduction of the phantom thickness. The intraclass correlation coefficient (ICC) has shown a great consistency and agreement among the observers for visibility, sharpness, contrast and noise. The ICC results are not as conclusive for the size criterion. Mathematical evaluation results also show a correlation of improvement in the image quality with the reduction in breast thickness. The results show that for the measures CNR, SNR, and FOM, the increase in image quality has a threshold after which the image quality ceases to improve and instead begins to reduce. CNR and FOM dropped when the breast phantom thickness was reduced approximately 40% of its initial thickness. This consistently happened at the point where the filter changed from rhodium (Rh) to molybdenum (Mo). Conclusion: This breast phantom study successfully designed and developed an anthropomorphic compressible breast phantom with cancer mimicking lesions with mechanical and X-ray properties similar to human breast tissue. This study also demonstrates that as breast compressed thickness reduces the visibility of the perceived lesion increases. The radiation dose generally decreases up to the point that the filter changes from rhodium to molybdenum. After this point, the radiation dose increases regardless of the phantom thickness. The results from this thesis are likely to have implications for clinical practice, as they support the need for compression/thickness reduction to enhance lesion visibilit
    corecore