662,163 research outputs found

    Operation of High-Voltage Transverse Shock Wave Ferromagnetic Generator in the Open Circuit and Charging Modes

    Get PDF
    Results of the investigation of the operation of explosive-driven high-voltage shock wave ferromagnetic generators (FMGs) in the open circuit and charging modes are presented. FMGs are based on the transverse (when the shock wave propagates across the magnetization vector M) shock demagnetization of Nd2Fe14B hard ferromagnetic energy-carrying elements of diameter 2.22 cm and length 2.54 cm (volume 8.5 cm3). In the charging mode the capacitance of capacitor banks compatt was varied from 18 to 36 nF. The energy transferred to the capacitor bank reached 0.38 J. FMGs provided pulsed powers of 35-45 kW in times ranging from 10 to 15 ýs. Computer codes were developed to digitally simulate the operation of the transverse FMG in the charging mode. experimental results that were obtained are in a good agreement with the results of digital simulations

    Instability of 8E5 calibration standard revealed by digital PCR risks inaccurate quantification of HIV DNA in clinical samples by qPCR

    Get PDF
    Establishing a cure for HIV is hindered by the persistence of latently infected cells which constitute the viral reservoir. Real-time qPCR, used for quantification of this reservoir by measuring HIV DNA, requires external calibration; a common choice of calibrator is the 8E5 cell line, which is assumed to be stable and to contain one HIV provirus per cell. In contrast, digital PCR requires no external calibration and potentially provides ‘absolute’ quantification. We compared the performance of qPCR and dPCR in quantifying HIV DNA in 18 patient samples. HIV DNA was detected in 18 by qPCR and in 15 by dPCR, the difference being due to the smaller sample volume analysed by dPCR. There was good quantitative correlation (R2 = 0.86) between the techniques but on average dPCR values were only 60% of qPCR values. Surprisingly, investigation revealed that this discrepancy was due to loss of HIV DNA from the 8E5 cell calibrant. 8E5 extracts from two other sources were also shown to have significantly less than one HIV DNA copy per cell and progressive loss of HIV from 8E5 cells during culture was demonstrated. We therefore suggest that the copy number of HIV in 8E5 extracts be established by dPCR prior to use as calibrator

    Above-ground biomass estimation of arable crops using UAV-based SfM photogrammetry

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Geocarto International on 3 dec 2018, available online: http://www.tandfonline.com/10.1080/10106049.2018.1552322Methods of estimating the total amount of above-ground biomass (AGB) in crop fields are generally based on labourious, random, and destructive in situ sampling. This study proposes a methodology for estimating herbaceous crop biomass using conventional optical cameras and structure from motion (SfM) photogrammetry. The proposed method is based on the determination of volumes according to the difference between a digital terrain model (DTM) and digital surface model (DSM) of vegetative cover. A density factor was calibrated based on a subset of destructive random samples to relate the volume and biomass and efficiently quantify the total AGB. In all cases, RMSE Z values less than 0.23 m were obtained for the DTMDSM coupling. Biomass field data confirmed the goodness of fit of the yieldbiomass estimation (R2=0,88 and 1,12 kg/ha) mainly in plots with uniform vegetation coverage. Furthermore, the method was demonstrated to be scalable to multiple platform types and sensorsThis work was supported by the life project “Operation CO2: Integrated Agroforestry Practices and Nature Conservation Against Climate Change - LIFE+ 11 ENV/ES/535” and by Xunta de Galicia under the grant “Financial aid for the consolidation and structure of competitive units of investigation in the universities of the University Galician System (2016-18)” Ref. ED431B 2016/030 and Ref. ED341D R2016/023.S

    The problems and challenges of managing crowd sourced audio-visual evidence

    Get PDF
    A number of recent incidents, such as the Stanley Cup Riots, the uprisings in the Middle East and the London riots have demonstrated the value of crowd sourced audio-visual evidence wherein citizens submit audio-visual footage captured on mobile phones and other devices to aid governmental institutions, responder agencies and law enforcement authorities to confirm the authenticity of incidents and, in the case of criminal activity, to identify perpetrators. The use of such evidence can present a significant logistical challenge to investigators, particularly because of the potential size of data gathered through such mechanisms and the added problems of time-lining disparate sources of evidence and, subsequently, investigating the incident(s). In this paper we explore this problem and, in particular, outline the pressure points for an investigator. We identify and explore a number of particular problems related to the secure receipt of the evidence, imaging, tagging and then time-lining the evidence, and the problem of identifying duplicate and near duplicate items of audio-visual evidence

    A Case-Based Reasoning Method for Locating Evidence During Digital Forensic Device Triage

    Get PDF
    The role of triage in digital forensics is disputed, with some practitioners questioning its reliability for identifying evidential data. Although successfully implemented in the field of medicine, triage has not established itself to the same degree in digital forensics. This article presents a novel approach to triage for digital forensics. Case-Based Reasoning Forensic Triager (CBR-FT) is a method for collecting and reusing past digital forensic investigation information in order to highlight likely evidential areas on a suspect operating system, thereby helping an investigator to decide where to search for evidence. The CBR-FT framework is discussed and the results of twenty test triage examinations are presented. CBR-FT has been shown to be a more effective method of triage when compared to a practitioner using a leading commercial application

    On the complexity of collaborative cyber crime investigations

    Get PDF
    This article considers the challenges faced by digital evidence specialists when collaborating with other specialists and agencies in other jurisdictions when investigating cyber crime. The opportunities, operational environment and modus operandi of a cyber criminal are considered, with a view to developing the skills and procedural support that investigators might usefully consider in order to respond more effectively to the investigation of cyber crimes across State boundaries

    Rethinking Digital Forensics

    Get PDF
    © IAER 2019In the modern socially-driven, knowledge-based virtual computing environment in which organisations are operating, the current digital forensics tools and practices can no longer meet the need for scientific rigour. There has been an exponential increase in the complexity of the networks with the rise of the Internet of Things, cloud technologies and fog computing altering business operations and models. Adding to the problem are the increased capacity of storage devices and the increased diversity of devices that are attached to networks, operating autonomously. We argue that the laws and standards that have been written, the processes, procedures and tools that are in common use are increasingly not capable of ensuring the requirement for scientific integrity. This paper looks at a number of issues with current practice and discusses measures that can be taken to improve the potential of achieving scientific rigour for digital forensics in the current and developing landscapePeer reviewe

    Case Tomtom/Teleatlas

    Get PDF
    corecore