3,094 research outputs found

    Enhancing pharmaceutical packaging through a technology ecosystem to facilitate the reuse of medicines and reduce medicinal waste

    Get PDF
    The idea of reusing dispensed medicines is appealing to the general public provided its benefits are illustrated, its risks minimized, and the logistics resolved. For example, medicine reuse could help reduce medicinal waste, protect the environment and improve public health. However, the associated technologies and legislation facilitating medicine reuse are generally not available. The availability of suitable technologies could arguably help shape stakeholders’ beliefs and in turn, uptake of a future medicine reuse scheme by tackling the risks and facilitating the practicalities. A literature survey is undertaken to lay down the groundwork for implementing technologies on and around pharmaceutical packaging in order to meet stakeholders’ previously expressed misgivings about medicine reuse (’stakeholder requirements’), and propose a novel ecosystem for, in effect, reusing returned medicines. Methods: A structured literature search examining the application of existing technologies on pharmaceutical packaging to enable medicine reuse was conducted and presented as a narrative review. Results: Reviewed technologies are classified according to different stakeholders’ requirements, and a novel ecosystem from a technology perspective is suggested as a solution to reusing medicines. Conclusion: Active sensing technologies applying to pharmaceutical packaging using printed electronics enlist medicines to be part of the Internet of Things network. Validating the quality and safety of returned medicines through this network seems to be the most effective way for reusing medicines and the correct application of technologies may be the key enabler

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    A Study And Analysis Of Watermarking Algorithms For Medical Images

    Get PDF
    Digital watermarking techniques hide digital data into digital images imperceptibly for different purposes and applications such as copyright protection, authentication, and data hiding. Teknik-teknik pembenaman tera air menyembunyikan data digit ke dalam imej-imej digit untuk pelbagai keperluan dan aplikasi seperti perlindungan hak cipta, pengesahan, dan penyembunyian data

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    A novel multipurpose watermarking scheme capable of protecting and authenticating images with tamper detection and localisation abilities

    Get PDF
    Technologies that fall under the umbrella of Industry 4.0 can be classified into one of its four significant components: cyber-physical systems, the internet of things (IoT), on-demand availability of computer system resources, and cognitive computing. The success of this industrial revolution lies in how well these components can communicate with each other, and work together in finding the most optimised solution for an assigned task. It is achieved by sharing data collected from a network of sensors. This data is communicated via images, videos, and a variety of other signals, attracting unwanted attention of hackers. The protection of such data is therefore pivotal, as is maintaining its integrity. To this end, this paper proposes a novel image watermarking scheme with potential applications in Industry 4.0. The strategy presented is multipurpose; one such purpose is authenticating the transmitted image, another is curtailing the illegal distribution of the image by providing copyright protection. To this end, two new watermarking methods are introduced, one of which is for embedding the robust watermark, and the other is related to the fragile watermark. The robust watermark's embedding is achieved in the frequency domain, wherein the frequency coefficients are selected using a novel mean-based coefficient selection procedure. Subsequently, the selected coefficients are manipulated in equal proportion to embed the robust watermark. The fragile watermark's embedding is achieved in the spatial domain, wherein self-generated fragile watermark(s) is embedded by directly altering the pixel bits of the host image. The effective combination of two domains results in a hybrid scheme and attains the vital balance between the watermarking requirements of imperceptibility, security and capacity. Moreover, in the case of tampering, the proposed scheme not only authenticates and provides copyright protection to images but can also detect tampering and localise the tampered regions. An extensive evaluation of the proposed scheme on typical images has proven its superiority over existing state-of-the-art methods
    corecore