51,605 research outputs found

    Bringing data minimization to digital wallets at scale with general-purpose zero-knowledge proofs

    Get PDF
    Today, digital identity management for individuals is either inconvenient and error-prone or creates undesirable lock-in effects and violates privacy and security expectations. These shortcomings inhibit the digital transformation in general and seem particularly concerning in the context of novel applications such as access control for decentralized autonomous organizations and identification in the Metaverse. Decentralized or self-sovereign identity (SSI) aims to offer a solution to this dilemma by empowering individuals to manage their digital identity through machine-verifiable attestations stored in a "digital wallet" application on their edge devices. However, when presented to a relying party, these attestations typically reveal more attributes than required and allow tracking end users' activities. Several academic works and practical solutions exist to reduce or avoid such excessive information disclosure, from simple selective disclosure to data-minimizing anonymous credentials based on zero-knowledge proofs (ZKPs). We first demonstrate that the SSI solutions that are currently built with anonymous credentials still lack essential features such as scalable revocation, certificate chaining, and integration with secure elements. We then argue that general-purpose ZKPs in the form of zk-SNARKs can appropriately address these pressing challenges. We describe our implementation and conduct performance tests on different edge devices to illustrate that the performance of zk-SNARK-based anonymous credentials is already practical. We also discuss further advantages that general-purpose ZKPs can easily provide for digital wallets, for instance, to create "designated verifier presentations" that facilitate new design options for digital identity infrastructures that previously were not accessible because of the threat of man-in-the-middle attacks

    Roaming service for electric vehicle charging using blockchain-based digital identity

    Get PDF
    We present a suitable approach to address the electric vehicle charging roaming problem (e-roaming). Blockchain technologies are applied to support the identity management process of users charging their vehicles and to record energy transactions securely. At the same time, off-chain cloud-based storage is used to record the transaction details. A user wallet settled on a mobile application stores user verified credentials; a backend application in the vehicle charging station validates the user credentials to authorize the energy transaction. The current model can be applied to similar contexts where the user may be required to keep several credentials from different providers to authenticate digital transactions.info:eu-repo/semantics/publishedVersio

    An Interoperable Access Control System based on Self-Sovereign Identities

    Get PDF
    The extreme growth of the World Wide Web in the last decade together with recent scandals related to theft or abusive use of personal information have left users unsatisfied withtheir digital identity providers and concerned about their online privacy. Self-SovereignIdentity (SSI) is a new identity management paradigm which gives back control over personal information to its rightful owner - the individual. However, adoption of SSI on theWeb is complicated by the high overhead costs for the service providers due to the lackinginteroperability of the various emerging SSI solutions. In this work, we propose an AccessControl System based on Self-Sovereign Identities with a semantically modelled AccessControl Logic. Our system relies on the Web Access Control authorization rules usedin the Solid project and extends them to additionally express requirements on VerifiableCredentials, i.e., digital credentials adhering to a standardized data model. Moreover,the system achieves interoperability across multiple DID Methods and types of VerifiableCredentials allowing for incremental extensibility of the supported SSI technologies bydesign. A Proof-of-Concept prototype is implemented and its performance as well as multiple system design choices are evaluated: The End-to-End latency of the authorizationprocess takes between 2-5 seconds depending on the used DID Methods and can theoretically be further optimized to 1.5-3 seconds. Evaluating the potential interoperabilityachieved by the system shows that multiple DID Methods and different types of VerifiableCredentials can be supported. Lastly, multiple approaches for modelling required Verifiable Credentials are compared and the suitability of the SHACL language for describingthe RDF graphs represented by the required Linked Data credentials is shown

    A Decentralised Digital Identity Architecture

    Get PDF
    Current architectures to validate, certify, and manage identity are based on centralised, top-down approaches that rely on trusted authorities and third-party operators. We approach the problem of digital identity starting from a human rights perspective, with a primary focus on identity systems in the developed world. We assert that individual persons must be allowed to manage their personal information in a multitude of different ways in different contexts and that to do so, each individual must be able to create multiple unrelated identities. Therefore, we first define a set of fundamental constraints that digital identity systems must satisfy to preserve and promote privacy as required for individual autonomy. With these constraints in mind, we then propose a decentralised, standards-based approach, using a combination of distributed ledger technology and thoughtful regulation, to facilitate many-to-many relationships among providers of key services. Our proposal for digital identity differs from others in its approach to trust in that we do not seek to bind credentials to each other or to a mutually trusted authority to achieve strong non-transferability. Because the system does not implicitly encourage its users to maintain a single aggregated identity that can potentially be constrained or reconstructed against their interests, individuals and organisations are free to embrace the system and share in its benefits.Comment: 30 pages, 10 figures, 3 table

    The Horcrux Protocol: A Method for Decentralized Biometric-based Self-sovereign Identity

    Full text link
    Most user authentication methods and identity proving systems rely on a centralized database. Such information storage presents a single point of compromise from a security perspective. If this system is compromised it poses a direct threat to users' digital identities. This paper proposes a decentralized authentication method, called the Horcrux protocol, in which there is no such single point of compromise. The protocol relies on decentralized identifiers (DIDs) under development by the W3C Verifiable Claims Community Group and the concept of self-sovereign identity. To accomplish this, we propose specification and implementation of a decentralized biometric credential storage option via blockchains using DIDs and DID documents within the IEEE 2410-2017 Biometric Open Protocol Standard (BOPS)

    Securing digital identities in the cloud by selecting an apposite federated identity management from SAML, OAuth and OpenID Connect

    Get PDF
    Access to computer systems and the information held on them, be it commercially or personally sensitive, is naturally, strictly controlled by both legal and technical security measures. One such method is digital identity, which is used to authenticate and authorize users to provide access to IT infrastructure to perform official, financial or sensitive operations within organisations. However, transmitting and sharing this sensitive information with other organisations over insecure channels always poses a significant security and privacy risk. An example of an effective solution to this problem is the Federated Identity Management (FIdM) standard adopted in the cloud environment. The FIdM standard is used to authenticate and authorize users across multiple organisations to obtain access to their networks and resources without transmitting sensitive information to other organisations. Using the same authentication and authorization details among multiple organisations in one federated group, it protects the identities and credentials of users in the group. This protection is a balance, mitigating security risk whilst maintaining a positive experience for users. Three of the most popular FIdM standards are Security Assertion Markup Language (SAML), Open Authentication (OAuth), and OpenID Connect (OIDC). This paper presents an assessment of these standards considering their architectural design, working, security strength and security vulnerability, to cognise and ascertain effective usages to protect digital identities and credentials. Firstly, it explains the architectural design and working of these standards. Secondly, it proposes several assessment criteria and compares functionalities of these standards based on the proposed criteria. Finally, it presents a comprehensive analysis of their security vulnerabilities to aid in selecting an apposite FIdM. This analysis of security vulnerabilities is of great significance because their improper or erroneous deployment may be exploited for attacks

    Reimagining refugee identity systems: a sociological approach

    Get PDF
    This paper explores how the social identity of refugees shapes and is shaped through the process of registering with humanitarian organisations. Building on the recent advance of critical studies on digital identity systems for refugee management, we show how the lens of social identity is helpful in understanding the relationship between refugee information systems and refugee experiences of registration and accessing services. Identity is a key issue related to contemporary information systems yet remains an under-theorised area of investigation from a sociological perspective in the field of information systems, international development and refugee studies. Using qualitative data from refugees in Bidi Bidi refugee camp in Northern Uganda, this paper showcases the centrality of refugees’ social identity in determining the journey of vulnerable individuals focusing on three key dimensions. First, how the identities of refugees based on home and family in South Sudan were carried over to refugees’ new location in Uganda and were later transformed through the process of registration. Second, how work and career profile of their lives in South Sudan shaped the identity of refugees, and how the absence of education credentials limited the realisation of personal aspirations. Third, how interactions between institutions and refugees are both shaped by and shape refugee identity. Our findings point to important policy implications for designing and implementing refugee identity systems

    Privacy-Preserving Trust Management Mechanisms from Private Matching Schemes

    Full text link
    Cryptographic primitives are essential for constructing privacy-preserving communication mechanisms. There are situations in which two parties that do not know each other need to exchange sensitive information on the Internet. Trust management mechanisms make use of digital credentials and certificates in order to establish trust among these strangers. We address the problem of choosing which credentials are exchanged. During this process, each party should learn no information about the preferences of the other party other than strictly required for trust establishment. We present a method to reach an agreement on the credentials to be exchanged that preserves the privacy of the parties. Our method is based on secure two-party computation protocols for set intersection. Namely, it is constructed from private matching schemes.Comment: The material in this paper will be presented in part at the 8th DPM International Workshop on Data Privacy Management (DPM 2013
    • …
    corecore