107,772 research outputs found

    Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations

    Get PDF
    The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded. The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded

    Trends and concerns in digital cartography

    Get PDF
    CISRG discussion paper ;

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Research questions and approaches for computational thinking curricula design

    Get PDF
    Teaching computational thinking (CT) is argued to be necessary but also admitted to be a very challenging task. The reasons for this, are: i) no general agreement on what computational thinking is; ii) no clear idea nor evidential support on how to teach CT in an effective way. Hence, there is a need to develop a common approach and a shared understanding of the scope of computational thinking and of effective means of teaching CT. Thus, the consequent ambition is to utilize the preliminary and further research outcomes on CT for the education of the prospective teachers of secondary, further and higher/adult education curricula

    Design as conversation with digital materials

    Get PDF
    This paper explores Donald Schön's concept of design as a conversation with materials, in the context of designing digital systems. It proposes material utterance as a central event in designing. A material utterance is a situated communication act that depends on the particularities of speaker, audience, material and genre. The paper argues that, if digital designing differs from other forms of designing, then accounts for such differences must be sought by understanding the material properties of digital systems and the genres of practice that surround their use. Perspectives from human-computer interaction (HCI) and the psychology of programming are used to examine how such an understanding might be constructed.</p

    Proposition of a PLM tool to support textile design: A case study applied to the definition of the early stages of design requirements

    Get PDF
    The current climate of economic competition forces businesses to adapt more than ever to the expectations of their customers. Faced with new challenges, practices in textile design have evolved in order to be able to manage projects in new work environments. After presenting a state of the art overview of collaborative tools used in product design and making functional comparison between PLM solutions, our paper proposes a case study for the development and testing of a collaborative platform in the textile industry, focusing on the definition of early stages of design needs. The scientific contributions presented in this paper are a state of the art of current PLM solutions and their application in the field of textile design; and a case study where we will present, define, and test the mock-up of a collaborative tool to assist the early stages, based on identified intermediary representations
    corecore