157 research outputs found

    State of the Art on Stylized Fabrication

    Get PDF
    © 2018 The Authors Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd. Digital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as ‘stylized fabrication methods’. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion or to devise a particular interaction with the fabricated model. In this state-of-the-art report, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research

    Embroidered Inflatables: Exploring Sample Making in Research through Design

    Get PDF
    This paper reflects on the experience of sample making to develop interactive materials. Sample making is a way to explore possibilities related to different materials techniques. In recent years design research has put an increasing emphasis on making as a mode of exploration, which in turn has made such exploration an increasingly popular and effective design research approach. However, sample making is a messy and complex process that is hard to document and communicate. To mitigate this, design researchers typically report their journeys from the perspective of their success, retroactively editing out or reducing the accounts of experiments that did not directly contribute to their goal. Although it is a useful way to of contextualizing a design process, it can contribute to a loss of richness and complexity of the work done along the way. Samples can be seen as instantiations of socio-techno systems of production, which means that they can be looked at from different perspectives and can potentially become the starting points of new design explorations. In recognition of this quality, we aim to investigate ways that samples can be appropriated in future journeys. To do so, we analyzed and reflected on the sample making process of the Embroidered Inflatables as a design case. The project resulted in 27 samples that explored distinct challenges related to designing actuators for soft wearables through the combination of silicone casting and embroidery techniques. To explore the potential of sample appropriation, we invited a fashion designer to a creative session that analyzed these samples from her personal perspective to identify new design directions. We detail the design process, reflect on our sample making experience and present strategies to support us in the process of reevaluating and appropriating samples

    Bio-Inspired Soft Artificial Muscles for Robotic and Healthcare Applications

    Full text link
    Soft robotics and soft artificial muscles have emerged as prolific research areas and have gained substantial traction over the last two decades. There is a large paradigm shift of research interests in soft artificial muscles for robotic and medical applications due to their soft, flexible and compliant characteristics compared to rigid actuators. Soft artificial muscles provide safe human-machine interaction, thus promoting their implementation in medical fields such as wearable assistive devices, haptic devices, soft surgical instruments and cardiac compression devices. Depending on the structure and material composition, soft artificial muscles can be controlled with various excitation sources, including electricity, magnetic fields, temperature and pressure. Pressure-driven artificial muscles are among the most popular soft actuators due to their fast response, high exertion force and energy efficiency. Although significant progress has been made, challenges remain for a new type of artificial muscle that is easy to manufacture, flexible, multifunctional and has a high length-to-diameter ratio. Inspired by human muscles, this thesis proposes a soft, scalable, flexible, multifunctional, responsive, and high aspect ratio hydraulic filament artificial muscle (HFAM) for robotic and medical applications. The HFAM consists of a silicone tube inserted inside a coil spring, which expands longitudinally when receiving positive hydraulic pressure. This simple fabrication method enables low-cost and mass production of a wide range of product sizes and materials. This thesis investigates the characteristics of the proposed HFAM and two implementations, as a wearable soft robotic glove to aid in grasping objects, and as a smart surgical suture for perforation closure. Multiple HFAMs are also combined by twisting and braiding techniques to enhance their performance. In addition, smart textiles are created from HFAMs using traditional knitting and weaving techniques for shape-programmable structures, shape-morphing soft robots and smart compression devices for massage therapy. Finally, a proof-of-concept robotic cardiac compression device is developed by arranging HFAMs in a special configuration to assist in heart failure treatment. Overall this fundamental work contributes to the development of soft artificial muscle technologies and paves the way for future comprehensive studies to develop HFAMs for specific medical and robotic requirements

    Lotus:Mediating Mindful Breathing

    Get PDF

    Proceedings of the 2021 DigitalFUTURES

    Get PDF
    This open access book is a compilation of selected papers from 2021 DigitalFUTURES—The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021). The work focuses on novel techniques for computational design and robotic fabrication. The contents make valuable contributions to academic researchers, designers, and engineers in the industry. As well, readers encounter new ideas about understanding material intelligence in architecture

    State of the art on stylized fabrication

    Get PDF
    © 2019 Copyright held by the owner/author(s). Digital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as stylized fabrication methods. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion, or to devise a particular interaction with the fabricated model. In this course, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research

    A Survey of Developable Surfaces: From Shape Modeling to Manufacturing

    Full text link
    Developable surfaces are commonly observed in various applications such as architecture, product design, manufacturing, and mechanical materials, as well as in the development of tangible interaction and deformable robots, with the characteristics of easy-to-product, low-cost, transport-friendly, and deformable. Transforming shapes into developable surfaces is a complex and comprehensive task, which forms a variety of methods of segmentation, unfolding, and manufacturing for shapes with different geometry and topology, resulting in the complexity of developable surfaces. In this paper, we reviewed relevant methods and techniques for the study of developable surfaces, characterize them with our proposed pipeline, and categorize them based on digital modeling, physical modeling, interaction, and application. Through the analysis to the relevant literature, we also discussed some of the research challenges and future research opportunities.Comment: 20 pages, 24 figures, Author submitted manuscrip

    Exploring expressive and functional capacities of knitted textiles exposed to wind influence

    Get PDF
    This study explores the design possibilities with knitted architectural textiles subjected to wind. The purpose is to investigate how such textiles could be applied to alter the usual static expression of exterior architectural and urban elements, such as\ua0facades\ua0and windbreaks. The design investigations were made on a manual knitting machine and on a CNC (computer numerically controlled)\ua0flat knitting machine. Four knitting techniques -\ua0tuck stitch, hanging stitches, false lace, and drop stitch - were explored based on their ability to create a three-dimensional effect on the surface level as well as on an architectural scale. Physical textile samples produced using those four techniques were subjected to controlled action of airflow. Digital experiments were also conducted, to probe the possibilities of digitally simulating textile behaviours in wind. The results indicate that especially the drop stitch technique exhibits interesting potentials. The variations in the drop stitch pattern generate both an aesthetic effect of volumetric expression of the textile architectural surface and seem beneficial in terms of wind speed reduction. Thus, these types of knitted textiles could be applied to design architecture that are efficient in terms of improving the aesthetic user experience and comfort in windy urban areas

    A System for Programming Anisotropic Physical Behaviour in Cloth Fabric

    Get PDF
    We propose a method to alter the tensile properties of cloth in a user defined and purposeful manner with the help of computer controlled embroidery. Our system is capable of infusing non-uniform stiffening in local regions of the cloth. This has numerous applications in the manufacturing of high performance smart textiles for the medical industry, sports goods, comfort-wear, etc where pressure needs to be redistributed and the cloth needs to deform correctly under a given load. We make three contributions to accomplish this: a decomposition scheme that expresses user-desired stiffness as a density map and a directional map, a novel stitch planning algorithm that produces a series of stitches adhering to the input stiffness maps and an inverse design based optimization driven by a cloth simulator that automatically computes stiffness maps based on user specified performance criteria. We perform multiple tests on physically manufactured cloth samples to show how embroidery affects the resultant fabric to demonstrate the efficacy of our approach
    • 

    corecore