56 research outputs found

    Palm Print Recognition Using Curve let Transform

    Full text link
    In the era of Information Technology, openness of the information is a major concern. As the confidentiality and integrity of the information is critically important, it has to be secured from unauthorized access. Traditional security and identification are not sufficient enough; people need to find a new authentic system based on behavioral & physiological characteristics of person which is called as Biometric. Palm print recognition gives several advantages over the other biometrics such as low resolution, low cost, non-intrusiveness and stable structure features. Now a days Palm print based personal verification system is used in many security application due to its ease of acquisition, high user acceptance and reliability. Various approaches which deal with palm recognition are texture approach, line approach and appearance approach. By using texture approach it is possible to obtain texture sample with low resolution and texture is much more stable as compare to line and appearance. This paper is aimed to analyze the performance of palm print recognition systems using Curvelet features and for dimension reduction PCA is used

    Curvelet Transform-Based Techniques For Biometric Person Identification

    Get PDF
    Biometric person identification refers to the recognition of a person based on the physical or behavioral traits. Palm print based biometric identification system is one of the low cost biometric systems, since the palm image can be obtained using low cost sensors, such as desktop scanners and web cameras. Because of ease of image acquisition of palm prints and identification accuracy, palm images are used in both uni- modal and multimodal biometric systems. A multi-scale and multi-directional representation is desirable to represent thick and scattered thin lines of a palm image. Multi-scale and multi-directional representation can also be used in image fusion, where two images of two different biometric traits can be fused to a single image to improve the identification accuracy. Face and palm images can be fused to keep the desired high pass information of the palm images and the low pass information of the face images. The Curvelet transform is a multi-scale and multi-directional geometric transform that provides a better representation of the objects with edges and requires a small number of curvelet coefficients to represent the curves. In this thesis, two methods using the very desirable characteristics of the curvelet transform are proposed for both the uni-modal and bi-modal biometric systems. A palm curvelet code (PCC) for palm print based uni-modal biometric systems and a pixel-level fusion method for face and palm based bi-modal biometric systems are developed. A simple binary coding technique that represents the structural information in curvelet directional sub-bands is used to obtain the PCC. Performance of the PCC is evaluated for both identification and verification modes of a palm print based biometric system, and then, the use of PCC in hierarchical identification is investigated. In the pixel-level fusion scheme for a bi-modal system, face and palm images are fused in the curvelet transform domain using mean-mean fusion rule. Extensive experimentations are carried out on three publicly available palm databases and one face database to evaluate the performance in terms of the commonly used metrics, and it is shown that the proposed methods provide a better performance compared to other existing methods

    Curvelet Based Feature Extraction

    Get PDF

    Multimodal Biometrics Enhancement Recognition System based on Fusion of Fingerprint and PalmPrint: A Review

    Get PDF
    This article is an overview of a current multimodal biometrics research based on fingerprint and palm-print. It explains the pervious study for each modal separately and its fusion technique with another biometric modal. The basic biometric system consists of four stages: firstly, the sensor which is used for enrolmen

    Palmprint Recognition by using Bandlet, Ridgelet, Wavelet and Neural Network

    Get PDF
    Palmprint recognition has emerged as a substantial biometric based personal identification. Tow types of biometrics palmprint feature. high resolution feature that includes: minutia points, ridges and singular points that could be extracted for forensic applications. Moreover, low resolution feature such as wrinkles and principal lines which could be extracted for commercial applications. This paper uses 700nm spectral band PolyU hyperspectral palmprint database. Multiscale image transform: bandlet, ridgelet and 2D discrete wavelet have been applied to extract feature. The size of features are reduced by using principle component analysis and linear discriminate analysis. Feed-forward Back-propagation neural network is used as a classifier. The recognition rate accuracy shows that bandlet transform outperforms others

    Combination a Skeleton Filter and Reduction Dimension of Kernel PCA Based on Palmprint Recognition

    Get PDF
    Palmprint identification is part of biometric recognition, which attracted many researchers, especially when fusion with face identification that will be applied in the airport to hasten knowing individual identity. To accelerate the process of verification feature palms, dimension reduction method is the dominant technique to extract the feature information of palms.The mechanism will boost if the ROI images are processed prior to get normalize image enhancement.In this paper with three sample input database, a kernel PCA method used as a dimension reduction compared with three others and a skeleton filter used as a image enhancement method compared with six others. The final results show that the proposed method successfully achieve the target in terms of the processing time of 0.7415 0.7415 second, the EER performance rate of 0.19 % and the success of verification process about 99,82 %

    Curvelet and Ridgelet-based Multimodal Biometric Recognition System using Weighted Similarity Approach

    Get PDF
    Biometric security artifacts for establishing the identity of a person with high confidence have evoked enormous interest in security and access control applications for the past few years. Biometric systems based solely on unimodal biometrics often suffer from problems such as noise, intra-class variations and spoof attacks. This paper presents a novel multimodal biometric recognition system by integrating three biometric traits namely iris, fingerprint and face using weighted similarity approach. In this work, the multi-resolution features are extracted independently from query images using curvelet and ridgelet transforms, and are then compared to the enrolled templates stored in the database containing features of each biometric trait. The final decision is made by normalizing the feature vectors, assigning different weights to the modalities and fusing the computed scores using score combination techniques. This system is tested with the public unimodal databases such as CASIA–Iris-V3-Interval, FVC2004, ORL and self-built multimodal databases. Experimental results obtained shows that the designed system achieves an excellent recognition rate of 98.75 per cent and 100 per cent for the public and self-built databases respectively and provides ultra high security than unimodal biometric systems.Defence Science Journal, 2014, 64(2), pp. 106-114. DOI: http://dx.doi.org/10.14429/dsj.64.346

    The fundamentals of unimodal palmprint authentication based on a biometric system: A review

    Get PDF
    Biometric system can be defined as the automated method of identifying or authenticating the identity of a living person based on physiological or behavioral traits. Palmprint biometric-based authentication has gained considerable attention in recent years. Globally, enterprises have been exploring biometric authorization for some time, for the purpose of security, payment processing, law enforcement CCTV systems, and even access to offices, buildings, and gyms via the entry doors. Palmprint biometric system can be divided into unimodal and multimodal. This paper will investigate the biometric system and provide a detailed overview of the palmprint technology with existing recognition approaches. Finally, we introduce a review of previous works based on a unimodal palmprint system using different databases

    A new approach to face recognition using Curvelet Transform

    Get PDF
    Multiresolution tools have been profusely employed in face recognition. Wavelet Transform is the best known among these multiresolution tools and is widely used for identification of human faces. Of late, following the success of wavelets a number of new multiresolution tools have been developed. Curvelet Transform is a recent addition to that list. It has better directional ability and effective curved edge representation capability. These two properties make curvelet transform a powerful weapon for extracting edge information from facial images. Our work aims at exploring the possibilities of curvelet transform for feature extraction from human faces in order to introduce a new alternative approach towards face recognition
    corecore