802 research outputs found

    Applications of single-qubit rotations in quantum public-key cryptography

    Full text link
    We discuss cryptographic applications of single-qubit rotations from the perspective of trapdoor one-way functions and public-key encryption. In particular, we present an asymmetric cryptosystem whose security relies on fundamental principles of quantum physics. A quantum public key is used for the encryption of messages while decryption is possible by means of a classical private key only. The trapdoor one-way function underlying the proposed cryptosystem maps integer numbers to quantum states of a qubit and its inversion can be infeasible by virtue of the Holevo's theorem.Comment: to appear in Phys. Rev.

    Cryptography and Its Applications in Information Security

    Get PDF
    Nowadays, mankind is living in a cyber world. Modern technologies involve fast communication links between potentially billions of devices through complex networks (satellite, mobile phone, Internet, Internet of Things (IoT), etc.). The main concern posed by these entangled complex networks is their protection against passive and active attacks that could compromise public security (sabotage, espionage, cyber-terrorism) and privacy. This Special Issue “Cryptography and Its Applications in Information Security” addresses the range of problems related to the security of information in networks and multimedia communications and to bring together researchers, practitioners, and industrials interested by such questions. It consists of eight peer-reviewed papers, however easily understandable, that cover a range of subjects and applications related security of information

    Society-oriented cryptographic techniques for information protection

    Get PDF
    Groups play an important role in our modern world. They are more reliable and more trustworthy than individuals. This is the reason why, in an organisation, crucial decisions are left to a group of people rather than to an individual. Cryptography supports group activity by offering a wide range of cryptographic operations which can only be successfully executed if a well-defined group of people agrees to co-operate. This thesis looks at two fundamental cryptographic tools that are useful for the management of secret information. The first part looks in detail at secret sharing schemes. The second part focuses on society-oriented cryptographic systems, which are the application of secret sharing schemes in cryptography. The outline of thesis is as follows

    How to Issue a Central Bank Digital Currency

    Get PDF
    With the emergence of Bitcoin and recently proposed stablecoins from BigTechs, such as Diem (formerly Libra), central banks face growing competition from private actors offering their own digital alternative to physical cash. We do not address the normative question whether a central bank should issue a central bank digital currency (CBDC) or not. Instead, we contribute to the current research debate by showing how a central bank could do so, if desired. We propose a token-based system without distributed ledger technology and show how earlier-deployed, software-only electronic cash can be improved upon to preserve transaction privacy, meet regulatory requirements in a compelling way, and offer a level of quantum-resistant protection against systemic privacy risk. Neither monetary policy nor financial stability would be materially affected because a CBDC with this design would replicate physical cash rather than bank deposits

    Privacy-Preserving Statistical Analysis of Health Data Using Paillier Homomorphic Encryption and Permissioned Blockchain

    Get PDF
    Blockchain is a decentralized and peer-to-peer ledger technology that adds transparency, traceability, and immutability to data. It has shown great promise in mitigating the interoperability problem and privacy concerns in the de facto electronic health record anagement systems and has recently received increasing attention from the healthcare industry. Several blockchain-based and decentralized health data management mechanisms have been proposed to improve the quality of care delivery to patients. Apart from care delivery, health data has other important applications, such as education, regulation, research, public health improvement, and policy sup- port. However, existing privacy acts prohibit health institutions and providers from sharing patients\u27 data with third parties. Therefore, research institutions that con- duct research on private health data need a secure system that provides accurate analysis results while preserving patient privacy and minimizing the risks of data breaches. In this thesis, We propose a novel privacy-preserving method for statis- tical analysis of health data. We leveraged the blockchain technology and Paillier encryption algorithm to increase the accuracy of data analysis while preserving the privacy of patients. Smart contracts were used to carry out mathematical operations on the encrypted records in a secure manner. We were able to successfully deploy the proposed scheme on Hyperledger Fabric, a permissioned and consortium blockchain platform. Compared to the previous works, the proposed model enjoys the bene ts of a distributed blockchain-based environment, which include higher availability and enhanced data security. The experimental results show the feasibility of this method with a reasonable amount of time for regular queries. Blockchain is a decentralized and peer-to-peer ledger technology that adds transparency, traceability, and immutability to data. It has shown great promise in mitigating the interoperability problem and privacy concerns in the de facto electronic health record anagement systems and has recently received increasing attention from the healthcare industry. Several blockchain-based and decentralized health data management mechanisms have been proposed to improve the quality of care delivery to patients. Apart from care delivery, health data has other important applications, such as education, regulation, research, public health improvement, and policy sup- port. However, existing privacy acts prohibit health institutions and providers from sharing patients\u27 data with third parties. Therefore, research institutions that con- duct research on private health data need a secure system that provides accurate analysis results while preserving patient privacy and minimizing the risks of data breaches. In this thesis, We propose a novel privacy-preserving method for statis- tical analysis of health data. We leveraged the blockchain technology and Paillier encryption algorithm to increase the accuracy of data analysis while preserving the privacy of patients. Smart contracts were used to carry out mathematical operations on the encrypted records in a secure manner. We were able to successfully deploy the proposed scheme on Hyperledger Fabric, a permissioned and consortium blockchain platform. Compared to the previous works, the proposed model enjoys the bene ts of a distributed blockchain-based environment, which include higher availability and enhanced data security. The experimental results show the feasibility of this method with a reasonable amount of time for regular queries

    How to Issue a Central Bank Digital Currency

    Get PDF
    With the emergence of Bitcoin and recently proposed stablecoins from BigTechs, such as Diem (formerly Libra), central banks face growing competition from private actors offering their own digital alternative to physical cash. We do not address the normative question whether a central bank should issue a central bank digital currency (CBDC) or not. Instead, we contribute to the current research debate by showing how a central bank could do so, if desired. We propose a token-based system without distributed ledger technology and show how earlier-deployed, software-only electronic cash can be improved upon to preserve transaction privacy, meet regulatory requirements in a compelling way, and offer a level of quantum-resistant protection against systemic privacy risk. Neither monetary policy nor financial stability would be materially affected because a CBDC with this design would replicate physical cash rather than bank deposits.Comment: Swiss National Bank Working Paper3/202

    T3AB: Transparent and Trustworthy Third-party Authority using Blockchain

    Full text link
    Increasingly, information systems rely on computational, storage, and network resources deployed in third-party facilities or are supported by service providers. Such an approach further exacerbates cybersecurity concerns constantly raised by numerous incidents of security and privacy attacks resulting in data leakage and identity theft, among others. These have in turn forced the creation of stricter security and privacy related regulations and have eroded the trust in cyberspace. In particular, security related services and infrastructures such as Certificate Authorities (CAs) that provide digital certificate service and Third-Party Authorities (TPAs) that provide cryptographic key services, are critical components for establishing trust in Internet enabled applications and services. To address such trust issues, various transparency frameworks and approaches have been recently proposed in the literature. In this paper, we propose a Transparent and Trustworthy TPA using Blockchain (T3AB) to provide transparency and accountability to the trusted third-party entities, such as honest-but-curious third-party IaaS servers, and coordinators in various privacy-preserving machine learning (PPML) approaches. T3AB employs the Ethereum blockchain as the underlying public ledger and also includes a novel smart contract to automate accountability with an incentive mechanism that motivates participants' to participate in auditing, and punishes unintentional or malicious behaviors. We implement T3AB, and show through experimental evaluation in the Ethereum official test network, Rinkeby, that the framework is efficient. We also formally show the security guarantee provided by T3AB, and analyze the privacy guarantee and trustworthiness it provides
    corecore