179 research outputs found

    Enhanced Digital Breast Tomosynthesis diagnosis using 3D visualization and automatic classification of lesions

    Get PDF
    Breast cancer represents the main cause of cancer-related deaths in women. Nonetheless, the mortality rate of this disease has been decreasing over the last three decades, largely due to the screening programs for early detection. For many years, both screening and clinical diagnosis were mostly done through Digital Mammography (DM). Approved in 2011, Digital Breast Tomosynthesis (DBT) is similar to DM but it allows a 3D reconstruction of the breast tissue, which helps the diagnosis by reducing the tissue overlap. Currently, DBT is firmly established and is approved as a stand-alone modality to replace DM. The main objective of this thesis is to develop computational tools to improve the visualization and interpretation of DBT data. Several methods for an enhanced visualization of DBT data through volume rendering were studied and developed. Firstly, important rendering parameters were considered. A new approach for automatic generation of transfer functions was implemented and two other parameters that highly affect the quality of volume rendered images were explored: voxel size in Z direction and sampling distance. Next, new image processing methods that improve the rendering quality by considering the noise regularization and the reduction of out-of-plane artifacts were developed. The interpretation of DBT data with automatic detection of lesions was approached through artificial intelligence methods. Several deep learning Convolutional Neural Networks (CNNs) were implemented and trained to classify a complete DBT image for the presence or absence of microcalcification clusters (MCs). Then, a faster R-CNN (region-based CNN) was trained to detect and accurately locate the MCs in the DBT images. The detected MCs were rendered with the developed 3D rendering software, which provided an enhanced visualization of the volume of interest. The combination of volume visualization with lesion detection may, in the future, improve both diagnostic accuracy and also reduce analysis time. This thesis promotes the development of new computational imaging methods to increase the diagnostic value of DBT, with the aim of assisting radiologists in their task of analyzing DBT volumes and diagnosing breast cancer

    New reconstruction methodology for chest tomosynthesis based on deep learning

    Get PDF
    Proceeding of: 7th International Conference on Image Formation in X-Ray Computed Tomography (ICIFXCT 2022), Baltimore, Maryland, 12-16 June 2022Tomosynthesis offers an alternative to planar radiography providing pseudo-tomographic information at a much lower radiation dose than CT. The fact that it cannot convey information about the density poses a major limitation towards the use of tomosynthesis in chest imaging, due to the wide range of pathologies that present an increase in the density of the pulmonary parenchyma. Previous works have attempted to improve image quality through enhanced analytical, iterative algorithms, or including a deep learning-based step in the reconstruction, but the results shown are still far from the quantitative information of a CT. In this work, we propose a reconstruction methodology consisting of a filtered back-projection step followed by post-processing based on Deep Learning to obtain a tomographic image closer to CT. Preliminary results show the potential of the proposed methodology to obtain true tomographic information from tomosynthesis data, which could replace CT scans in applications where the radiation dose is critical.This work has been supported by Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación: PID2019-110369RB-I00/AEI/10.13039/501100011033 (RADHOR); PDC2021-121656-I00 (MULTIRAD), funded by MCIN/AEI/10.13039/501100011033 and by the European Union 'NextGenerationEU'/PRTR. Also funded by Comunidad de Madrid: Multiannual Agreement with UC3M in the line of 'Fostering Young Doctors Research' (DEEPCT-CM-UC3M), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation S2017/BMD-3867 RENIM-CM, co-funded by European Structural and Investment Fund. And also partially funded by CRUE Universidades, CSIC and Banco Santander (Fondo Supera Covid19), project RADCOV19 and by Instituto de Salud Carlos III through the project "PT20/00044", cofunded by European Regional Development Fund "A way to make Europe";. The CNIC is supported by Instituto de Salud Carlos III, Ministerio de Ciencia e Innovacióm and the Pro CNIC Foundation. The imaging and associated clinical data downloaded from MIDRC (The Medical Imaging Data Resource Center) and used for research in this publication was made possible by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health under contracts 75N92020C00008 and 75N92020C00021

    Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation

    Full text link
    The two-dimensional nature of mammography makes estimation of the overall breast density challenging, and estimation of the true patient-specific radiation dose impossible. Digital breast tomosynthesis (DBT), a pseudo-3D technique, is now commonly used in breast cancer screening and diagnostics. Still, the severely limited 3rd dimension information in DBT has not been used, until now, to estimate the true breast density or the patient-specific dose. This study proposes a reconstruction algorithm for DBT based on deep learning specifically optimized for these tasks. The algorithm, which we name DBToR, is based on unrolling a proximal-dual optimization method. The proximal operators are replaced with convolutional neural networks and prior knowledge is included in the model. This extends previous work on a deep learning-based reconstruction model by providing both the primal and the dual blocks with breast thickness information, which is available in DBT. Training and testing of the model were performed using virtual patient phantoms from two different sources. Reconstruction performance, and accuracy in estimation of breast density and radiation dose, were estimated, showing high accuracy (density <+/-3%; dose <+/-20%) without bias, significantly improving on the current state-of-the-art. This work also lays the groundwork for developing a deep learning-based reconstruction algorithm for the task of image interpretation by radiologists.Comment: Accepted in Medical Image Analysi

    Automatic Classification of Simulated Breast Tomosynthesis Whole Images for the Presence of Microcalcification Clusters Using Deep CNNs

    Get PDF
    Microcalcification clusters (MCs) are among the most important biomarkers for breast cancer, especially in cases of nonpalpable lesions. The vast majority of deep learning studies on digital breast tomosynthesis (DBT) are focused on detecting and classifying lesions, especially soft-tissue lesions, in small regions of interest previously selected. Only about 25% of the studies are specific to MCs, and all of them are based on the classification of small preselected regions. Classifying the whole image according to the presence or absence of MCs is a difficult task due to the size of MCs and all the information present in an entire image. A completely automatic and direct classification, which receives the entire image, without prior identification of any regions, is crucial for the usefulness of these techniques in a real clinical and screening environment. The main purpose of this work is to implement and evaluate the performance of convolutional neural networks (CNNs) regarding an automatic classification of a complete DBT image for the presence or absence of MCs (without any prior identification of regions). In this work, four popular deep CNNs are trained and compared with a new architecture proposed by us. The main task of these trainings was the classification of DBT cases by absence or presence of MCs. A public database of realistic simulated data was used, and the whole DBT image was taken into account as input. DBT data were considered without and with preprocessing (to study the impact of noise reduction and contrast enhancement methods on the evaluation of MCs with CNNs). The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance. Very promising results were achieved with a maximum AUC of 94.19% for the GoogLeNet. The second-best AUC value was obtained with a new implemented network, CNN-a, with 91.17%. This CNN had the particularity of also being the fastest, thus becoming a very interesting model to be considered in other studies. With this work, encouraging outcomes were achieved in this regard, obtaining similar results to other studies for the detection of larger lesions such as masses. Moreover, given the difficulty of visualizing the MCs, which are often spread over several slices, this work may have an important impact on the clinical analysis of DBT images

    NOVEL APPLICATIONS OF MACHINE LEARNING IN BIOINFORMATICS

    Get PDF
    Technological advances in next-generation sequencing and biomedical imaging have led to a rapid increase in biomedical data dimension and acquisition rate, which is challenging the conventional data analysis strategies. Modern machine learning techniques promise to leverage large data sets for finding hidden patterns within them, and for making accurate predictions. This dissertation aims to design novel machine learning-based models to transform biomedical big data into valuable biological insights. The research presented in this dissertation focuses on three bioinformatics domains: splice junction classification, gene regulatory network reconstruction, and lesion detection in mammograms. A critical step in defining gene structures and mRNA transcript variants is to accurately identify splice junctions. In the first work, we built the first deep learning-based splice junction classifier, DeepSplice. It outperforms the state-of-the-art classification tools in terms of both classification accuracy and computational efficiency. To uncover transcription factors governing metabolic reprogramming in non-small-cell lung cancer patients, we developed TFmeta, a machine learning approach to reconstruct relationships between transcription factors and their target genes in the second work. Our approach achieves the best performance on benchmark data sets. In the third work, we designed deep learning-based architectures to perform lesion detection in both 2D and 3D whole mammogram images

    Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135545/1/mp7345_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135545/2/mp7345.pd

    MAMMOGRAM AND TOMOSYNTHESIS CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS

    Get PDF
    Mammography is the most widely used method of screening for breast cancer. Traditional mammography produces two-dimensional X-ray images, while advanced tomosynthesis mammography produces reconstructed three-dimensional images. Due to high variability in tumor size and shape, and the low signal-to-noise ratio inherent to mammography, manual classification yields a significant number of false positives, thereby contributing to an unnecessarily large number of biopsies performed to reduce the risk of misdiagnosis. Achieving high diagnostic accuracy requires expertise acquired over many years of experience as a radiologist. The convolutional neural network (CNN) is a popular deep-learning construct used in image classification. The convolutional process involves simplifying an image containing millions of pixels to a set of small feature maps, thereby reducing the input dimension while retaining the features that distinguish different classes of images. This technique has achieved significant advancements in large-set image-classification challenges in recent years. In this study, high-quality original mammograms and tomosynthesis were obtained with approval from an institutional review board. Different classifiers based on convolutional neural networks were built to classify the 2-D mammograms and 3-D tomosynthesis, and each classifier was evaluated based on its performance relative to truth values generated by a board of expert radiologists. The results show that CNNs have great potential for automatic breast cancer detection using mammograms and tomosynthesis

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements
    corecore