235 research outputs found

    Background Calibration of a 6-Bit 1Gsps Split-Flash ADC

    Get PDF
    In this MS thesis, a redundant flash analog-to-digital converter (ADC) using a ``Split-ADC\u27 calibration structure and lookup-table-based correction is presented. ADC input capacitance is minimized through use of small, power efficient comparators; redundancy is used to tolerate the resulting large offset voltages. Correction of errors and estimation of calibration parameters are performed continuously in the background in the digital domain. The proposed flash ADC has an effective-number-of-bits (ENOB) of 6-bits and is designed for a target sampling rate of 1Gs/s in 180nm CMOS. The calibration algorithm described has been simulated in MATLAB and an FPGA implementation has been investigated

    Bi-Linear Homogeneity Enforced Calibration for Pipelined ADCs

    Full text link
    Pipelined analog-to-digital converters (ADCs) are key enablers in many state-of-the-art signal processing systems with high sampling rates. In addition to high sampling rates, such systems often demand a high linearity. To meet these challenging linearity requirements, ADC calibration techniques were heavily investigated throughout the past decades. One limitation in ADC calibration is the need for a precisely known test signal. In our previous work, we proposed the homogeneity enforced calibration (HEC) approach, which circumvents this need by consecutively feeding a test signal and a scaled version of it into the ADC. The calibration itself is performed using only the corresponding output samples, such that the test signal can remain unknown. On the downside, the HEC approach requires the option to accurately scale the test signal, impeding an on-chip implementation. In this work, we provide a thorough analysis of the HEC approach, including the effects of an inaccurately scaled test signal. Furthermore, the bi-linear homogeneity enforced calibration (BL-HEC) approach is introduced and suggested to account for an inaccurate scaling and, therefore, to facilitate an on-chip implementation. In addition, a comprehensive stability and convergence analysis of the BL-HEC approach is carried out. Finally, we verify our concept with simulations.Comment: 12 pages, 5 figure

    A Low-Power, Reconfigurable, Pipelined ADC with Automatic Adaptation for Implantable Bioimpedance Applications

    Get PDF
    Biomedical monitoring systems that observe various physiological parameters or electrochemical reactions typically cannot expect signals with fixed amplitude or frequency as signal properties can vary greatly even among similar biosignals. Furthermore, advancements in biomedical research have resulted in more elaborate biosignal monitoring schemes which allow the continuous acquisition of important patient information. Conventional ADCs with a fixed resolution and sampling rate are not able to adapt to signals with a wide range of variation. As a result, reconfigurable analog-to-digital converters (ADC) have become increasingly more attractive for implantable biosensor systems. These converters are able to change their operable resolution, sampling rate, or both in order convert changing signals with increased power efficiency. Traditionally, biomedical sensing applications were limited to low frequencies. Therefore, much of the research on ADCs for biomedical applications focused on minimizing power consumption with smaller bias currents resulting in low sampling rates. However, recently bioimpedance monitoring has become more popular because of its healthcare possibilities. Bioimpedance monitoring involves injecting an AC current into a biosample and measuring the corresponding voltage drop. The frequency of the injected current greatly affects the amplitude and phase of the voltage drop as biological tissue is comprised of resistive and capacitive elements. For this reason, a full spectrum of measurements from 100 Hz to 10-100 MHz is required to gain a full understanding of the impedance. For this type of implantable biomedical application, the typical low power, low sampling rate analog-to-digital converter is insufficient. A different optimization of power and performance must be achieved. Since SAR ADC power consumption scales heavily with sampling rate, the converters that sample fast enough to be attractive for bioimpedance monitoring do not have a figure-of-merit that is comparable to the slower converters. Therefore, an auto-adapting, reconfigurable pipelined analog-to-digital converter is proposed. The converter can operate with either 8 or 10 bits of resolution and with a sampling rate of 0.1 or 20 MS/s. Additionally, the resolution and sampling rate are automatically determined by the converter itself based on the input signal. This way, power efficiency is increased for input signals of varying frequency and amplitude

    Digital Background Self-Calibration Technique for Compensating Transition Offsets in Reference-less Flash ADCs

    Get PDF
    This Dissertation focusses on proving that background calibration using adaptive algorithms are low-cost, stable and effective methods for obtaining high accuracy in flash A/D converters. An integrated reference-less 3-bit flash ADC circuit has been successfully designed and taped out in UMC 180 nm CMOS technology in order to prove the efficiency of our proposed background calibration. References for ADC transitions have been virtually implemented built-in in the comparators dynamic-latch topology by a controlled mismatch added to each comparator input front-end. An external very simple DAC block (calibration bank) allows control the quantity of mismatch added in each comparator front-end and, therefore, compensate the offset of its effective transition with respect to the nominal value. In order to assist to the estimation of the offset of the prototype comparators, an auxiliary A/D converter with higher resolution and lower conversion speed than the flash ADC is used: a 6-bit capacitive-DAC SAR type. Special care in synchronization of analogue sampling instant in both ADCs has been taken into account. In this thesis, a criterion to identify the optimum parameters of the flash ADC design with adaptive background calibration has been set. With this criterion, the best choice for dynamic latch architecture, calibration bank resolution and flash ADC resolution are selected. The performance of the calibration algorithm have been tested, providing great programmability to the digital processor that implements the algorithm, allowing to choose the algorithm limits, accuracy and quantization errors in the arithmetic. Further, systematic controlled offset can be forced in the comparators of the flash ADC in order to have a more exhaustive test of calibration

    Circuits and algorithms for pipelined ADCs in scaled CMOS technologies

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.MIT Barker Engineering Library copy: printed in pages.Also issued printed in pages.Includes bibliographical references (leaves 179-184).CMOS technology scaling is creating significant issues for analog circuit design. For example, reduced signal swing and device gain make it increasingly difficult to realize high-speed, high-gain feedback loops traditionally used in switched capacitor circuits. This research involves two complementary methods for addressing scaling issues. First is the development of two blind digital calibration techniques. Decision Boundary Gap Estimation (DBGE) removes static non-linearities and Chopper Offset Estimation (COE) nulls offsets in pipelined ADCs. Second is the development of circuits for a new architecture called zero-crossing based circuits (ZCBC) that is more amenable to scaling trends. To demonstrate these circuits and algorithms, two different ADCs were designed: an 8 bit, 200MS/s in TSMC 180nm technology, and a 12 bit, 50 MS/s in IBM 90nm technology. Together these techniques can be enabling technologies for both pipelined ADCs and general mixed signal design in deep sub-micron technologies.by Lane Gearle Brooks.Ph.D

    A re-configurable pipeline ADC architecture with built-in self-test techniques

    Get PDF
    High-performance analog and mixed-signal integrated circuits are integral parts of today\u27s and future networking and communication systems. The main challenge facing the semiconductor industry is the ability to economically produce these analog ICs. This translates, in part, into the need to efficiently evaluate the performance of such ICs during manufacturing (production testing) and to come up with dynamic architectures that enable the performance of these ICs to be maximized during manufacturing and later when they\u27re operating in the field. On the performance evaluation side, this dissertation deals with the concept of Built-In-Self-Test (BIST) to allow the efficient and economical evaluation of certain classes of high-performance analog circuits. On the dynamic architecture side, this dissertation deals with pipeline ADCs and the use of BIST to dynamically, during production testing or in the field, re-configure them to produce better performing ICs.;In the BIST system proposed, the analog test signal is generated on-chip by sigma-delta modulation techniques. The performance of the ADC is measured on-chip by a digital narrow-band filter. When this system is used on the wafer level, significant testing time and thus testing cost can be saved.;A re-configurable pipeline ADC architecture to improve the dynamic performance is proposed. Based on dynamic performance measurements, the best performance configuration is chosen from a collection of possible pipeline configurations. This basic algorithm can be applied to many pipeline analog systems. The proposed grouping algorithm cuts down the number of evaluation permutation from thousands to 18 for a 9-bit ADC thus allowing the method to be used in real applications.;To validate the developments of this dissertation, a 40MS/s 9-bit re-configurable pipeline ADC was designed and implemented in TSMC\u27s 0.25mum single-poly CMOS digital process. This includes a fully differential folded-cascode gain-boosting operational amplifier with high gain and high unity-gain bandwidth. The experimental results strongly support the effectiveness of reconfiguration algorithm, which provides an average of 0.5bit ENOB improvement among the set of configurations. For many applications, this is a very significant performance improvement.;The BIST and re-configurability techniques proposed are not limited to pipeline ADCs only. The BIST methodology is applicable to many analog systems and the re-configurability is applicable to any analog pipeline system

    High performance zero-crossing based pipelined analog-to-digital converters

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 133-137).As CMOS processes continue to scale to smaller dimensions, the increased fT of the devices and smaller parasitic capacitance allow for more power ecient and faster digital circuits to be made. But at the same time, output impedance of transistors has gone down, as have the power supply voltages, and leakage currents have increased. These changes in the technology have made analog design more difficult. More specifically, the design of a high gain op-amp, a fundamental analog building block, has become more difficult in scaled processes. In this work, op-amps in pipelined ADCs are replaced with zero-crossing detectors(ZCD). Without the closed-loop feedback provided by the op-amp, a new set of design constraints for Zero-Crossing Based Circuits (ZCBC) is explored.by Yue Jack Chu.Ph.D

    All Digital, Background Calibration for Time-Interleaved and Successive Approximation Register Analog-to-Digital Converters

    Get PDF
    The growth of digital systems underscores the need to convert analog information to the digital domain at high speeds and with great accuracy. Analog-to-Digital Converter (ADC) calibration is often a limiting factor, requiring longer calibration times to achieve higher accuracy. The goal of this dissertation is to perform a fully digital background calibration using an arbitrary input signal for A/D converters. The work presented here adapts the cyclic Split-ADC calibration method to the time interleaved (TI) and successive approximation register (SAR) architectures. The TI architecture has three types of linear mismatch errors: offset, gain and aperture time delay. By correcting all three mismatch errors in the digital domain, each converter is capable of operating at the fastest speed allowed by the process technology. The total number of correction parameters required for calibration is dependent on the interleaving ratio, M. To adapt the Split-ADC method to a TI system, 2M+1 half-sized converters are required to estimate 3(2M+1) correction parameters. This thesis presents a 4:1 Split-TI converter that achieves full convergence in less than 400,000 samples. The SAR architecture employs a binary weight capacitor array to convert analog inputs into digital output codes. Mismatch in the capacitor weights results in non-linear distortion error. By adding redundant bits and dividing the array into individual unit capacitors, the Split-SAR method can estimate the mismatch and correct the digital output code. The results from this work show a reduction in the non-linear distortion with the ability to converge in less than 750,000 samples
    corecore