219 research outputs found

    A review and consideration on the kinematics of reach-to-grasp movements in macaque monkeys

    Get PDF
    The bases for understanding the neuronal mechanisms that underlie the control of reach-to-grasp movements among nonhuman primates, particularly macaques, has been widely studied. However, only a few kinematic descriptions of their prehensile actions are available. A thorough understanding of macaques' prehensile movements is manifestly critical, in light of their role in biomedical research as valuable models for studying neuromotor disorders and brain mechanisms, as well as for developing brain-machine interfaces to facilitate arm control. This article aims to review the current state of knowledge on the kinematics of grasping movements that macaques perform in naturalistic, semi-naturalistic, and laboratory settings, to answer the following questions: Are kinematic signatures affected by the context within which the movement is performed? In what ways is kinematics of humans' and macaques' prehensile actions similar/dissimilar? Our analysis reflects the challenges involved in making comparisons across settings and species due to the heterogeneous picture in terms of the number of subjects, stimuli, conditions, and hands used. The kinematics of free-ranging macaques are characterized by distinctive features that are exhibited neither by macaques in laboratory setting nor human subjects. The temporal incidence of key kinematic landmarks diverges significantly between species, indicating disparities in the overall organization of movement. Given such complexities, we attempt a synthesis of extant body of evidence, intending to generate some significant implications for directions that future research might take, to recognize the remaining gaps and pursue the insights and resolutions to generate an interpretation of movement kinematics that accounts for all settings and subjects

    Sharing of hand kinematic synergies across subjects in daily living activities

    Get PDF
    The motor system is hypothesised to use kinematic synergies to simplify hand control. Recent studies suggest that there is a large set of synergies, sparse in degrees of freedom, shared across subjects, so that each subject performs each action with a sparse combination of synergies. Identifying how synergies are shared across subjects can help in prostheses design, in clinical decision-making or in rehabilitation. Subject-specific synergies of healthy subjects performing a wide number of representative daily living activities were obtained through principal component analysis. To make synergies comparable between subjects and tasks, the hand kinematics data were scaled using normative range of motion data. To obtain synergies sparse in degrees of freedom a rotation method that maximizes the sum of the variances of the squared loadings was applied. Resulting synergies were clustered and each cluster was characterized by a core synergy and different indexes (prevalence, relevance for function and within-cluster synergy similarity), substantiating the sparsity of synergies. The first two core synergies represent finger flexion and were present in all subjects. The remaining core synergies represent coordination of the thumb joints, thumb-index joints, palmar arching or fingers adduction, and were employed by subjects in different combinations, thus revealing different subject-specific strategies

    Using kinematic reduction for studying grasping postures. An application to power and precision grasp of cylinders

    Get PDF
    The kinematic analysis of human grasping is challenging because of the high number of degrees of freedom involved. The use of principal component and factorial analyses is proposed in the present study to reduce the hand kinematics dimensionality in the analysis of posture for ergonomic purposes, allowing for a comprehensive study without losing accuracy while also enabling velocity and acceleration analyses to be performed. A laboratory study was designed to analyse the effect of weight and diameter in the grasping posture for cylinders. This study measured the hand posture from six subjects when transporting cylinders of different weights and diameters with precision and power grasps. The hand posture was measured using a Vicon® motion-tracking system, and the principal component analysis was applied to reduce the kinematics dimensionality. Different ANOVAs were performed on the reduced kinematic variables to check the effect of weight and diameter of the cylinders, as well as that of the subject. The results show that the original twenty-three degrees of freedom of the hand were reduced to five, which were identified as digit arching, closeness, palmar arching, finger adduction and thumb opposition. Both cylinder diameter and weight significantly affected the precision grasping posture: diameter affects closeness, palmar arching and opposition, while weight affects digit arching, palmar arching and closeness. The power-grasping posture was mainly affected by the cylinder diameter, through digit arching, closeness and opposition. The grasping posture was largely affected by the subject factor and this effect couldn't be attributed only to hand size. In conclusion, this kinematic reduction allowed identifying the effect of the diameter and weight of the cylinders in a comprehensive way, being diameter more important than weight.We are grateful to the Universitat Jaume I for financial support through project P1·1B2013-33, and the Spanish Ministry of Research and Innovation and the EU (FEDER funds) jointly through projects DPI2010-18177 and DPI2014-52095-P

    Assessing Performance, Role Sharing, and Control Mechanisms in Human-Human Physical Interaction for Object Manipulation

    Get PDF
    abstract: Object manipulation is a common sensorimotor task that humans perform to interact with the physical world. The first aim of this dissertation was to characterize and identify the role of feedback and feedforward mechanisms for force control in object manipulation by introducing a new feature based on force trajectories to quantify the interaction between feedback- and feedforward control. This feature was applied on two grasp contexts: grasping the object at either (1) predetermined or (2) self-selected grasp locations (“constrained” and “unconstrained”, respectively), where unconstrained grasping is thought to involve feedback-driven force corrections to a greater extent than constrained grasping. This proposition was confirmed by force feature analysis. The second aim of this dissertation was to quantify whether force control mechanisms differ between dominant and non-dominant hands. The force feature analysis demonstrated that manipulation by the dominant hand relies on feedforward control more than the non-dominant hand. The third aim was to quantify coordination mechanisms underlying physical interaction by dyads in object manipulation. The results revealed that only individuals with worse solo performance benefit from interpersonal coordination through physical couplings, whereas the better individuals do not. This work showed that naturally emerging leader-follower roles, whereby the leader in dyadic manipulation exhibits significant greater force changes than the follower. Furthermore, brain activity measured through electroencephalography (EEG) could discriminate leader and follower roles as indicated power modulation in the alpha frequency band over centro-parietal areas. Lastly, this dissertation suggested that the relation between force and motion (arm impedance) could be an important means for communicating intended movement direction between biological agents.Dissertation/ThesisDoctoral Dissertation Biomedical Engineering 201

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    Neural bases of hand synergies

    Get PDF
    abstract: The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is “synergy control” which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review, we describe the evolution of the modern concept using studies of kinematic and force synergies in human hand control, neurophysiology of cortical and spinal neurons, and electromyographic (EMG) activity of hand muscles. We go beyond the often purely descriptive usage of synergy by reviewing the organization of the underlying neuronal circuitry in order to propose mechanistic explanations for various observed synergy phenomena. Finally, we propose a theoretical framework to reconcile important and still debated concepts such as the definitions of “fixed” vs. “flexible” synergies and mechanisms underlying the combination of synergies for hand control.View the article as published at http://journal.frontiersin.org/article/10.3389/fncom.2013.00023/ful

    Kineto-dynamic modeling of human upper limb for robotic manipulators and assistive applications

    Get PDF
    The sensory-motor architecture of human upper limb and hand is characterized by a complex inter-relation of multiple elements, such as ligaments, muscles, and joints. Nonetheless, humans are able to generate coordinated and meaningful motor actions to interact-and eventually explore-the external environment. Such a complexity reduction is usually studied within the framework of synergistic control, whose focus has been mostly limited on human grasping and manipulation. Little attention has been devoted to the spatio-temporal characterization of human upper limb kinematic strategies and how the purposeful exploitation of the environmental constraints shapes human execution of manipulative actions. In this chapter, we report results on the evidence of a synergistic control of human upper limb and during manipulation with the environment. We propose functional analysis to characterize main spatio-temporal coordinated patterns of arm joints. Furthermore, we study how the environment influences human grasping synergies. The effect of cutaneous impairment is also evaluated. Applications to the design and control of robotic and assistive devices are finally discussed

    Characterizing Feedforward and Feedback Grasp Control Mechanisms in Early Phases of Manipulation

    Get PDF
    abstract: Anticipatory planning of digit positions and forces is critical for successful dexterous object manipulation. Anticipatory (feedforward) planning bypasses the inherent delays in reflex responses and sensorimotor integration associated with reactive (feedback) control. It has been suggested that feedforward and feedback strategies can be distinguished based on the profile of grip and load force rates during the period between initial contact with the object and object lift. However, this has not been validated in tasks that do not constrain digit placement. The purposes of this thesis were (1) to validate the hypothesis that force rate profiles are indicative of the control strategy used for object manipulation and (2) to test this hypothesis by comparing manipulation tasks performed with and without digit placement constraints. The first objective comprised two studies. In the first study an additional light or heavy mass was added to the base of the object. In the second study a mass was added, altering the object's center of mass (CM) location. In each experiment digit force rates were calculated between the times of initial digit contact and object lift. Digit force rates were fit to a Gaussian bell curve and the goodness of fit was compared across predictable and unpredictable mass and CM conditions. For both experiments, a predictable object mass and CM elicited bell shaped force rate profiles, indicative of feedforward control. For the second objective, a comparison of performance between subjects who performed the grasp task with either constrained or unconstrained digit contact locations was conducted. When digit location was unconstrained and CM was predictable, force rates were well fit to a bell shaped curve. However, the goodness of fit of the force rate profiles to the bell shaped curve was weaker for the constrained than the unconstrained digit placement condition. These findings seem to indicate that brain can generate an appropriate feedforward control strategy even when digit placement is unconstrained and an infinite combination of digit placement and force solutions exists to lift the object successfully. Future work is needed that investigates the role digit positioning and tactile feedback has on anticipatory control of object manipulation.Dissertation/ThesisM.S. Bioengineering 201

    A synergy-based hand control is encoded in human motor cortical areas

    Get PDF
    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses
    • …
    corecore