3,126 research outputs found

    A Low-Dimensional Representation for Robust Partial Isometric Correspondences Computation

    Full text link
    Intrinsic isometric shape matching has become the standard approach for pose invariant correspondence estimation among deformable shapes. Most existing approaches assume global consistency, i.e., the metric structure of the whole manifold must not change significantly. While global isometric matching is well understood, only a few heuristic solutions are known for partial matching. Partial matching is particularly important for robustness to topological noise (incomplete data and contacts), which is a common problem in real-world 3D scanner data. In this paper, we introduce a new approach to partial, intrinsic isometric matching. Our method is based on the observation that isometries are fully determined by purely local information: a map of a single point and its tangent space fixes an isometry for both global and the partial maps. From this idea, we develop a new representation for partial isometric maps based on equivalence classes of correspondences between pairs of points and their tangent spaces. From this, we derive a local propagation algorithm that find such mappings efficiently. In contrast to previous heuristics based on RANSAC or expectation maximization, our method is based on a simple and sound theoretical model and fully deterministic. We apply our approach to register partial point clouds and compare it to the state-of-the-art methods, where we obtain significant improvements over global methods for real-world data and stronger guarantees than previous heuristic partial matching algorithms.Comment: 17 pages, 12 figure

    Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds

    Full text link
    The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of convolutional neural networks. Inspired by recent interest in geometric deep learning, which aims to generalize convolutional neural networks to manifold and graph-structured domains, we define a geometric scattering transform on manifolds. Similar to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning tasks. Our results generalize the deformation stability and local translation invariance of Euclidean scattering, and demonstrate the importance of linking the used filter structures to the underlying geometry of the data.Comment: 35 pages; 3 figures; 2 tables; v3: Revisions based on reviewer comment

    SHREC'16: partial matching of deformable shapes

    Get PDF
    Matching deformable 3D shapes under partiality transformations is a challenging problem that has received limited focus in the computer vision and graphics communities. With this benchmark, we explore and thoroughly investigate the robustness of existing matching methods in this challenging task. Participants are asked to provide a point-to-point correspondence (either sparse or dense) between deformable shapes undergoing different kinds of partiality transformations, resulting in a total of 400 matching problems to be solved for each method - making this benchmark the biggest and most challenging of its kind. Five matching algorithms were evaluated in the contest; this paper presents the details of the dataset, the adopted evaluation measures, and shows thorough comparisons among all competing methods

    Non-Rigid Puzzles

    Get PDF
    Shape correspondence is a fundamental problem in computer graphics and vision, with applications in various problems including animation, texture mapping, robotic vision, medical imaging, archaeology and many more. In settings where the shapes are allowed to undergo non-rigid deformations and only partial views are available, the problem becomes very challenging. To this end, we present a non-rigid multi-part shape matching algorithm. We assume to be given a reference shape and its multiple parts undergoing a non-rigid deformation. Each of these query parts can be additionally contaminated by clutter, may overlap with other parts, and there might be missing parts or redundant ones. Our method simultaneously solves for the segmentation of the reference model, and for a dense correspondence to (subsets of) the parts. Experimental results on synthetic as well as real scans demonstrate the effectiveness of our method in dealing with this challenging matching scenario

    Learning shape correspondence with anisotropic convolutional neural networks

    Get PDF
    Establishing correspondence between shapes is a fundamental problem in geometry processing, arising in a wide variety of applications. The problem is especially difficult in the setting of non-isometric deformations, as well as in the presence of topological noise and missing parts, mainly due to the limited capability to model such deformations axiomatically. Several recent works showed that invariance to complex shape transformations can be learned from examples. In this paper, we introduce an intrinsic convolutional neural network architecture based on anisotropic diffusion kernels, which we term Anisotropic Convolutional Neural Network (ACNN). In our construction, we generalize convolutions to non-Euclidean domains by constructing a set of oriented anisotropic diffusion kernels, creating in this way a local intrinsic polar representation of the data (`patch'), which is then correlated with a filter. Several cascades of such filters, linear, and non-linear operators are stacked to form a deep neural network whose parameters are learned by minimizing a task-specific cost. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field
    • …
    corecore