952 research outputs found

    Nanoparticle communications : from chemical signals in nature to wireless sensor networks

    Get PDF
    The need to convey information has always existed in both the animal and human kingdoms. The article offers a review of the latest developments in transporting information using nanosized particles. It begins by examining chemical signalling in nature, and goes on to discuss recent advances in mimicking this in bio-inspired engineering. It then points out the important difference between signalling and general communication, and explains why the latter is a more challenging problem. The existing research on mimicking chemical signalling in nature is a precurser to research into general chemical communication. A review of the latest theoretical research in general chemical communications is presented, along with the practical developments of the world’s first nanoparticle communications test-bed. In the parts of the article, the authors discuss the potential research challenges and identify three important areas for future development: robustness, miniaturization, and scalability

    A comprehensive survey of recent advancements in molecular communication

    Get PDF
    With much advancement in the field of nanotechnology, bioengineering and synthetic biology over the past decade, microscales and nanoscales devices are becoming a reality. Yet the problem of engineering a reliable communication system between tiny devices is still an open problem. At the same time, despite the prevalence of radio communication, there are still areas where traditional electromagnetic waves find it difficult or expensive to reach. Points of interest in industry, cities, and medical applications often lie in embedded and entrenched areas, accessible only by ventricles at scales too small for conventional radio waves and microwaves, or they are located in such a way that directional high frequency systems are ineffective. Inspired by nature, one solution to these problems is molecular communication (MC), where chemical signals are used to transfer information. Although biologists have studied MC for decades, it has only been researched for roughly 10 year from a communication engineering lens. Significant number of papers have been published to date, but owing to the need for interdisciplinary work, much of the results are preliminary. In this paper, the recent advancements in the field of MC engineering are highlighted. First, the biological, chemical, and physical processes used by an MC system are discussed. This includes different components of the MC transmitter and receiver, as well as the propagation and transport mechanisms. Then, a comprehensive survey of some of the recent works on MC through a communication engineering lens is provided. The paper ends with a technology readiness analysis of MC and future research directions

    A comprehensive survey on hybrid communication in context of molecular communication and terahertz communication for body-centric nanonetworks

    Get PDF
    With the huge advancement of nanotechnology over the past years, the devices are shrinking into micro-scale, even nano-scale. Additionally, the Internet of nano-things (IoNTs) are generally regarded as the ultimate formation of the current sensor networks and the development of nanonetworks would be of great help to its fulfilment, which would be ubiquitous with numerous applications in all domains of life. However, the communication between the devices in such nanonetworks is still an open problem. Body-centric nanonetworks are believed to play an essential role in the practical application of IoNTs. BCNNs are also considered as domain specific like wireless sensor networks and always deployed on purpose to support a particular application. In these networks, electromagnetic and molecular communications are widely considered as two main promising paradigms and both follow their own development process. In this survey, the recent developments of these two paradigms are first illustrated in the aspects of applications, network structures, modulation techniques, coding techniques and security to then investigate the potential of hybrid communication paradigms. Meanwhile, the enabling technologies have been presented to apprehend the state-of-art with the discussion on the possibility of the hybrid technologies. Additionally, the inter-connectivity of electromagnetic and molecular body-centric nanonetworks is discussed. Afterwards, the related security issues of the proposed networks are discussed. Finally, the challenges and open research directions are presented

    Strengthening the Growth of Indian Defence by Harnessing Nanotechnology - A Prospective

    Get PDF
    Nano-networking is truly interdisciplinary and emerging field including nanotechnology, biotechnology, and ICT. It is a developing research area which consists of identifying, modeling, analyzing and organizing communication protocols between devices in Nanoscale environments. The main goal is to explore beyond the existing capabilities of Nanodevices by cooperating and sharing information between them. Since conventional communication models are not appropriate to represent Nanonetworks, it is necessary to introduce new communication paradigm in the form of suitable protocols and network architectures. Nanotechnology could greatly improve some of the existing technologies and thus create new operational opportunities or, at least, help the military forces to strengthen themselves in the battlefield. The paper presents a brief overview of nanotechnology applications in defence sector and the challenges towards realization of protocols for Nanocommunication. The research is going forward and one can expect more protection rather than damage in the domain of ‘Nano-age’.Defence Science Journal, 2013, 63(1), pp.46-52, DOI:http://dx.doi.org/10.14429/dsj.63.376

    An M\textit{M}-ary Concentration Shift Keying With Common Detection Thresholds For Multi-Transmitter Molecular Communication

    Full text link
    Concentration shift keying (CSK) is a widely adopted modulation technique for molecular communication-based nanonetworks, which is a key enabler for the Internet of Bio-NanoThings (IoBNT). However, existing methods provide optimal error performance at the cost of high operational complexity that scales poorly as the number of transmitters, KK, increases. This paper proposes a novel MM-ary CSK method termed CSK with Common detection Thresholds (CSK-CT). CSK-CT uses common\textit{common} thresholds that are sufficiently low to ensure the reliable detection of symbols transmitted by every transmitter, regardless of their distance. We derive closed-form expressions to obtain the common thresholds and release concentrations. To enhance the error performance, we optimize the release concentration using a scaling exponent that further optimizes the common thresholds. We evaluate the performance of CSK-CT in comparison to the benchmark CSK for varying values of KK and MM. In terms of the error probability, CSK-CT offers between 10−710^{-7} and 10−410^{-4}, which are a substantial improvement from the 10−410^{-4} to 10−310^{-3} offered by the benchmark. In terms of complexity, CSK-CT is O(n)\textit{O}\big(n\big) and does not scale with KK but MM (M≪KM\ll K), while the benchmark is O(n2)\textit{O}\big(n^2\big). Furthermore, CSK-CT showcased the ability to mitigate inter-symbol interference, although this facet warrants further investigation. Due to its low error probability, improved scalability, low complexity, and potential ISI mitigation features, CSK-CT demonstrates benefits in applications of IoBNT focused on data-gathering. Specifically, its utility is well-noted in settings where a computationally strained receiver collects sensitive health-related data from multiple transmitters.Comment: Submitted to IEEE for possible publicatio
    • …
    corecore