476 research outputs found

    Diffusion Tensor Imaging: Exploring the Motor Networks and Clinical Applications

    Get PDF
    With the advances in diffusion magnetic resonance (MR) imaging techniques, diffusion tensor imaging (DTI) has been applied to a number of neurological conditions because DTI can demonstrate microstructures of the brain that are not assessable with conventional MR imaging. Tractography based on DTI offers gross visualization of the white matter fiber architecture in the human brain in vivo. Degradation of restrictive barriers and disruption of the cytoarchitecture result in changes in the diffusion of water molecules in various pathological conditions, and these conditions can also be assessed with DTI. Yet many factors may influence the ability to apply DTI clinically, so these techniques have to be used with a cautious hand

    Perisylvian white matter connectivity in the human right hemisphere

    Get PDF
    Background By using diffusion tensor magnetic resonance imaging (DTI) and subsequent tractography, a perisylvian language network in the human left hemisphere recently has been identified connecting Brocas's and Wernicke's areas directly (arcuate fasciculus) and indirectly by a pathway through the inferior parietal cortex. Results Applying DTI tractography in the present study, we found a similar three-way pathway in the right hemisphere of 12 healthy individuals: a direct connection between the superior temporal and lateral frontal cortex running in parallel with an indirect connection. The latter composed of a posterior segment connecting the superior temporal with the inferior parietal cortex and an anterior segment running from the inferior parietal to the lateral frontal cortex. Conclusion The present DTI findings suggest that the perisylvian inferior parietal, superior temporal, and lateral frontal corticies are tightly connected not only in the human left but also in the human right hemisphere

    PRETERM BIRTH RESULTS IN ALTERATIONS IN NEURAL CONNECTIVITY AT AGE 16 YEARS

    Get PDF
    Very low birth weight preterm (PT) children are at high risk for brain injury. This study investigates microstructural differences in the brains of PT adolescents relative to term control subjects using diffusion tensor imaging (DTI), as well as studying their neurodevelopmental outcomes. Forty-four PT subjects (600 - 1250 grams birth weight) without neonatal brain injury and 41 term controls were evaluated at age 16 years with DTI, the Wechsler Intelligence Scale for Children - III (WISC), the Peabody Picture Vocabulary Test - Revised (PPVT), and the Comprehensive Test of Phonological Processing (CTOPP). PT subjects scored lower than term subjects on WISC full scale (p = 0.002), verbal (p = 0.027), and performance IQ tests (p = 0.001), as well as CTOPP phonological awareness (p = 0.005), but scored comparably to term subjects on PPVT and CTOPP Rapid Naming tests. PT subjects had lower fractional anisotropy (FA) values, suggestive of white matter disorganization, in multiple regions including bilateral uncinate fasciculi (left: p = 0.004; right: p = 0.002), bilateral external capsules (left: p \u3c 0.0001; right: p = 0.001), the splenium of the corpus callosum (p = 0.014), and white matter serving the inferior frontal gyrus bilaterally (left: p \u3c 0.0001; right: p = 0.005). FA values in both the left and right uncinate fasciculi correlated with PPVT scores (a semantic language task) in the PT subjects (left: R = 0.314, p = 0.038; right: R = 0.336, p = 0.026). FA values in the left and right arcuate fasciculi correlated with CTOPP Rapid Naming scores (a phonologic task) in the PT subjects (left: R = 0.424, p = 0.004; right: R = 0.301, p = 0.047). These data support for the first time that the recently proposed concept of dual pathways underlying language function are present in PT adolescents. These include a left-sided dorsal pathway associated with phonological and articulatory processing (arcuate fasciculus), and a bilateral ventral pathway for semantic, receptive language processing (uncinate fasciculus). The striking bilateral dorsal correlations for the PT group suggest that prematurely born subjects rely more heavily on the right hemisphere than typically developing adolescents for performance of phonological language tasks. These findings may represent either a delay in maturation or the engagement of alternative neural pathways for language in the developing PT brain

    Fiber tracking of the frontal aslant tract and subcomponents of the arcuate fasciculus in 5–8-year-olds : relation to speech and language function

    Get PDF
    Long association cortical fiber pathways support developing networks for speech and language, but we do not have a clear understanding of how they develop in early childhood. Using diffusion-weighted imaging (DWI) we tracked the frontal aslant tract (FAT), arcuate fasciculus (AF), and AF segments (anterior, long, posterior) in 19 typical 5–8-year-olds, an age range in which significant improvement in speech and language function occurs. While the microstructural properties of the FAT and the right AF did not show age-related differences over the age range we investigated, the left AF evidenced increasing fractional anisotropy with age. Microstructural properties of the AF in both hemispheres, however, predicted receptive and expressive language. Length of the left FAT also predicted receptive language, which provides initial suggestion that this pathway is important for language development. These findings have implications for models of language development and for models of the neurobiology of language more broadly

    Combining DTI and fMRI to investigate language lateralisation

    Get PDF
    Hemispheric lateralisation in the human brain has been a focus of interest in different fields of neurosciences since a long time (Galaburda, LeMay, Kemper, & Geschwind, 1978; Rubino, 1970). One of the most studied and earliest observed lateralised brain functions is language. Reported in the nineteenth by the French physician and anatomist Paul Broca (1861) and by the German anatomist and neuropathologist Carl Wernicke (1874), language was found to be more impaired following tumours or strokes in the left hemisphere. In recent years, a number of studies have employed diffusion tensor imaging (DTI) to characterize left hemisphere language-related white matter pathways (Barrick, Lawes, Mackay, & Clark, 2007; Bernal & Altman, 2010; Catani et al., 2007; Glasser & Rilling, 2008; Hagmann et al., 2006; Parker et al., 2005; Propper et al., 2010; Upadhyay, Hallock, Ducros, Kim, & Ronen, 2008; Vernooij et al., 2007). In addition, lesion and fMRI studies in healthy subjects have indicated that speech comprehension and production are lateralised to the left brain hemisphere (A. U. Turken & Dronkers, 2011). The main aim of the present doctoral work is to better delineate the relationship between anatomical and functional correlates of hemispheric dominance in the perisylvian language network. To this purpose a multi-modal neuroimaging approach including DTI and fMRI on a population of 23 healthy individuals was applied. In the first study, a virtual in vivo interactive dissection of the three subcomponents of the arcuate fasciculus was carried out and measures of perisylvian white matter integrity were derived from tract-specific dissection. Consistently with previous studies (Barrick, et al., 2007; Buchel et al., 2004; Catani, et al., 2007; Powell et al., 2006), a significant leftward asymmetry in the fractional anysotropy (FA) value of the long direct segment of the arcuate fasciculus (AF) has been found. In addition, I found another significant leftward lateralisation in the streamlines (SL) of the posterior segment and a rightward distribution of the SL index of the anterior segment of the AF. Finally, I found no evidence of a significant relationship between the leftward lateralisation indeces and any measures of language and verbal memory performance in my group. In the second study, I implemented functional connectivity analysis to test whether leftward lateralisation of connectivity indeces between perisylvian regions can be observed in individuals performing a language-related task. The main finding of the functional connectivity analysis is a significant rightward lateralisation (left, 0.347 ± 0.183; right, 0.493 ± 0.228; P = 0.037) in the anterior connection, between the the inferior frontal gyrus (IFG) and the inferior parietal lobe (IPG). In the third study, I combined DTI and fMRI data to examine whether a significant relationship is present between these measures of perisylvian connectivity and it significantly differs between hemispheres. The correlation analysis demonstrated significant negative relations between the mean FA values in the long segment of the AF and the strength of inter-regional coupling between the IFG and the middle temporal gyrus (MTG) in the left hemisphere, and between the mean FA values in the anterior segment of the AF and the strength of regional coupling between IFG and IPL in the right hemisphere. Finally, there were no significant correlations between laterality indices estimated on FA and functional connectivity values.

    Integration of multi-shell diffusion imaging derived metrics in tractography reconstructions of clinical data

    Get PDF
    Tese de mestrado integrado Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), Universidade de Lisboa, Faculdade de Ciências, 2019Nos últimos anos, com o rápido avanço das técnicas imagiológicas, a oportunidade de mapear o cérebro humano in vivo com uma resolução sem precedentes tornou-se realidade, permanecendo ainda hoje como uma das áreas de maior interesse da neurociência. Sabendo que o movimento natural das moléculas de água nos tecidos biológicos é altamente influenciado pelo ambiente microestrutural envolvente, e que a anisotropia que este processo aleatório assume na matéria branca pode ser explorada com o intuito de inferir características importantes associadas ao tecido neuronal, a ressonância magnética ponderada por difusão (dMRI, do inglês “Diffusion-Weighted Magnetic Resonance Imaging") afirmou-se como a técnica de imagem mais amplamente utilizada para a investigação in vivo e não invasiva da conectividade cerebral. A primeira técnica padrão de dMRI foi a imagiologia por tensor de difusão (DTI, do inglês "Diffusion Tensor Imaging"). Implementada com a capacidade de fornecer sensibilidade à microestrutura do tecido, esta técnica permite extrair informação acerca da tridimensionalidade da distribuição da difusão de moléculas de água através da aplicação de seis gradientes de difusão não colineares entre si. Além da difusividade média (MD, do inglês "Mean Diffusivity"), é também possível extrair outros índices microestruturais, como a anisotropia fraccional (FA, do inglês "Fractional Anisotropy"), que fornece informação acerca da percentagem de difusão anisotrópica num determinado voxel. Ambas as métricas são amplamente utilizadas como medidas de alterações microestruturais, todavia, apesar da sua sensibilidade, estes marcadores não são específicos quanto às características individuais da microestrutura tecidual. Regiões com reduzida FA podem camuflar regiões de conformação de cruzamento de fibras, ou fibras muito anguladas, que a DTI não consegue resolver. A razão para esta limitação reside no número reduzido de diferentes direções de difusão que são exploradas, assim como no pressuposto de que a distribuição das moléculas de água é gaussiana, o que não é necessariamente verdade. De forma alternativa e com o intuito de tais limitações serem ultrapassadas, é possível implementar uma representação matemática do sinal adquirido de forma a explorar o propagador de difusão, da qual a imagiologia por ressonância magnética do propagador aparente médio (MAP-MRI, do inglês “Mean Apparent Propagator Magnetic Resonance Imaging”) é exemplo. Esta técnica analítica caracteriza-se pelo cálculo da função de densidade de probabilidade associada ao deslocamento de spin, o que permite descrever o caráter não-gaussiano do processo de difusão tridimensional e quantificar índices escalares inerentes ao processo de difusão, os quais sublinham as características complexas intrínsecas à microestrutura do tecido. Estes parâmetros incluem o deslocamento médio quadrático (MSD, em inglês “mean square displacement”), a probabilidade de retorno à origem (RTOP, do inglês “return-to-the origin probability”) e suas variantes de difusão em uma e duas dimensões – a probabilidade de retorno ao plano (RTPP, do inglês “return-to-the plane probability”) e a probabilidade de retorno ao eixo (RTAP, do inglês “return-to-the axis probability”), respetivamente. Em resposta às limitações da DTI associadas à falta de especificidade para distinguir características microestruturais dos tecidos, surgiu ainda o modelo de Dispersão de Orientação de Neurite e Imagem de Densidade (NODDI, do inglês “Neurite Orientation Dispersion and Density Imaging”), o qual utiliza o processo de difusão para estimar a morfologia das neurites. Tendo como premissa subjacente que o sinal de difusão pode ser definido pela soma da contribuição dos sinais de diferentes compartimentos, este modelo biofísico diferencia o espaço intra e extracelular o que, por sua vez, permite quantificar a dispersão e densidade das neurites. Deste modo, dois parâmetros intrínsecos à microestrutura envolvente podem ser calculados: a densidade neurítica e o índice de dispersão da orientação das neurites. No entanto, de forma a garantir a viabilidade clínica do modelo, este pode ser aplicado por meio do método AMICO (do inglês “Accelerated Microstructure Imaging via Convex Optimization”) através do seu ajuste linear, o que permite o cálculo do índice de dispersão da orientação das neurites (ODI, do inglês “Orientation Dispersion Index”), da fração de volume intracelular (ICVF do inglês, “Intracellular Volume Fraction”), e da fração de volume isotrópico (ISOVF, do inglês “Isotropic Volume Fraction”). O estudo da configuração arquitetural das estruturas cerebrais in vivo, por meio da dMRI associada aos métodos de tractografia, permitiu a reconstrução não invasiva das fibras neuronais e a exploração da informação direcional inerente às mesmas, sendo que o seu estudo tem revelado uma enorme expansão por meio do estabelecimento de marcadores biológicos perante a presença de diversas condições patológicas. O objetivo principal desta dissertação prende-se com existência de uma variação proeminentenas métricas de difusão ao longo dos tratos de matéria branca no cérebro humano. Atualmente, a maioriados estudos de tractografia tem por base uma abordagem que se resume à análise do valor escalar médio da métrica de difusão para a estrutura cerebral em estudo, pelo que se tem verificado um crescente interesse na utilização de métodos que considerem a extensão da variabilidade nas métricas de difusão ao longo dos tratos de modo a providenciarem um maior nível de detalhe ao nível do processo de difusão, evitando interpretações erróneas dos parâmetros microestruturais. Desta forma, em primeiro lugar, foi desenvolvido uma análise ao longo dos tratos de matéria branca, tendo por base a variação dos valores assumidos pelos parâmetros microestruturais acima mencionados. No presente estudo foi possível demonstrar a eficácia de tal abordagem ao longo de três tratos de matéria de branca (fascículo arqueado, trato corticoespinhal, e corpo caloso), para além de permitir, através da variância assumida pelos diversos parâmetros microestruturais, o estudo detalhado de regiões anatómicas que assumem uma distribuição complexa de múltiplos conjuntos populacionais de fibras, como é o caso do centro semioval, o qual constitui uma região de cruzamento de fibras provenientes dos três tratos de matéria branca em estudo. De seguida, esta técnica foi utilizada com sucesso na identificação de diferenças microestruturais por meio do estudo dos diversos parâmetros de difusão em pacientes com diagnóstico prévio de epilepsia no lobo temporal (TLE, do inglês “Temporal Lobe Epilepsy”), com foco epiléptico localizado no hemisfério esquerdo, e controlos. O estudo do ambiente microestrutural por meio dos múltiplos mapas escalares permitiu averiguar a alteração do processo de difusão e/ou anisotropia, associadas ao efeito fisiopatológico da TLE na organização da matéria branca. Os resultados revelaram diferenças localizadas, as quais se traduziram num aumento da difusividade e redução da anisotropia do processo de difusão ao longo dos tratos em estudo dos pacientes com TLE, sugerindo deste modo uma perda na organização das diversas estruturas anatómicas e a expansão do espaço extracelular face aos controlos. Verificou-se ainda que pacientes com esta condição neurológica sofrem de alterações microestruturais que afetam redes cerebrais em grande escala, envolvendo regiões temporais e extratemporais de ambos os hemisférios. Adicionalmente, aplicada como técnica capaz de investigar padrões de mudança na matéria branca, procedeu-se à realização de um estudo assente na estatística espacial baseada no trato (TBSS, do inglês “Tract-Based Spatial Statistics”). Após a exploração das diversas métricas de difusão, os pacientes com TLE (com lateralização à esquerda) demonstraram alterações no processo de difusão, ilustradas pelos diversos padrões de mudança microestrutural de cada métrica em estudo, concordantes com os resultados anteriormente aferidos pela análise ao longo do trato. Por fim, uma análise baseada em fixel (FBA, do inglês “Fixel-Based Analysis”) foi realizada, a qual permitiu uma análise estatística abrangente de medidas quantitativas da matéria branca, com o intuito de detetar alterações no volume intra-axonal por variação na densidade intra-voxel e/ou reorganização da morfologia macroscópica. Para identificar tais diferenças entre pacientes e controlos, três parâmetros foram considerados: densidade das fibras (FD, do inglês “Fibre Density”), seção transversal do feixe de fibras (FC, do inglês “Fibre-bundle Cross-section”), e densidade de fibras e seção transversal (FDC, do inglês “Fibre Density and Cross-section). Reduções na FD, FC e FDC foram identificadas em pacientes com TLE (com lateralização à esquerda) em comparação com os controlos, o que está de acordo com as mudanças microestruturais que resultam do processo de degeneração que afeta as estruturas de matéria branca com a perda de axónios na presença de uma condição neuropatológica como a TLE. Apesar do resultado final positivo, tendo em conta a meta previamente estabelecida, está aberto o caminho para o seu aperfeiçoamento, tendo em vista as direções futuras que emergem naturalmente desta dissertação. Como exemplo disso, poder-se-á recorrer ao estudo pormenorizado das metodologias técnicas associadas à abordagem apresentada que tem por base a análise das métricas de difusão ao longo dos tratos de matéria branca, uma vez que o desvio padrão associado a cada valor atribuído pelas diversas métricas foi significativo, o que de alguma forma poderá ter influenciado os resultados e, consequentemente, as conclusões deles extraídas, tendo em vista a sua viabilidade enquanto aplicação clínica. Como nota final, gostaria apenas de salientar que a imagiologia por difusão e, em particular, a tractografia têm ainda muito espaço para progredir. A veracidade desta afirmação traduz-se pela existência de uma grande variedade de modelos e algoritmos implementados, bem como de técnicas e metodologias de análise à informação microestrutural retida tendo por base o perfil de difusão que carateriza cada trato em estudo, sem que no entanto, exista consenso na comunidade científica acerca da melhor abordagem a seguir.Diffusion-weighted magnetic resonance imaging (dMRI) is a non-invasive imaging method which has been successfully applied to study white matter (WM) in order to determine physiological information and infer tissue microstructure. The human body is filled with barriers affecting the mobility of molecules and preventing it from being constant in different directions (anisotropic diffusion). In the brain, the sources for this anisotropy arise from dense packing axons and from the myelin sheath that surrounds them. Diffusion Tensor Imaging (DTI) is widely used to extract fibre directions from diffusion data, but it fails in regions containing multiple fibre orientations. The constrained spherical deconvolution technique had been proposed to address this limitation. It provides an estimate of the fibre orientation distribution that is robust to noise whilst preserving angular resolution. As a noninvasive technique that generates a three-dimensional reconstruction of neuronal fibres, tractography is able to map in vivo the human WM based on the reconstruct of the fibre orientations from the diffusion profile. Most of the tractography studies use a “tract-averaged” approach to analysis, however it is well known that there is a prominent variation in diffusion metrics within WM tracts. In this study we address the challenge of defining a microstructural signature taking into account the potentially rich anatomical variation in diffusion metrics along the tracts. Therefore, a workflow to conduct along-tract analysis of WM tracts (namely, arcuate fasciculus, corticospinal and corpus callosum) and integrate not only DTI derived measures, but also more advanced parameters from Mean Apparent Propagator-Magnetic Resonance Imaging (MAP-MRI) and Neurite Orientation Dispersion and Density Imaging (NODDI) model, was developed across healthy controls and patients with Temporal Lobe Epilepsy (TLE). Beyond the true biological variation in diffusion properties along tracts, this technique was applied to show that it allows a more detailed analysis of small regions-of-interest extracted from the tract in order to avoid fibres from WM pathways in the neighbourhood, which might lead to equivocal biological interpretations of the microstructural parameters. Consequently, the along-tract streamline distribution from the centrum semiovale, which is known to be a complex fibre geometry with multiple fibres populations from arcuate fasciculus, corticospinal and corpus callosum, was investigated. Finally, to validate our approach and highlight the strength of this extensible framework, two other methods were implemented in order to support the conclusions derived from the along-tract analysis computed between-groups. Firstly, a tract-based spatial statistics (TBSS) analysis was performed to study the WM change patterns across the whole brain in patients with TLE, and explore the alteration of multiple diffusion metrics. This voxel-based technique provides a powerful and objective method to perform multi-subject comparison, based on voxel-wise statistics of diffusion metrics but simultaneous aiming to minimize the effects of misalignment using a conventional voxel-based analysis method. With this in mind, the results showed increased diffusivity and reduced diffusion anisotropy, suggesting a loss of structural organization and expansion of the extracellular space in the presence of neuropathological condition as TLE. Secondly, the fixel-based analysis (FBA) was performed allowing a comprehensive statistical analysis of WM quantitative measures in order to have access to changes that may result within WM tracts in the presence of TLE. The microstructural/macrostructural changes in WM tracts of TLE patients were observed in temporal and extratemporal regions of both hemispheres, which agrees with the concept that epilepsy is a network disorder

    Detection of Pathologic Changes Following Traumatic Brain Injury Using Magnetic Resonance Imaging

    Get PDF
    Background: Approximately two percent of Finns have sequels after traumatic brain injury (TBI), and many TBI patients are young or middle-aged. The high rate of unemployment after TBI has major economic consequences for society, and traumatic brain injury often has remarkable personal consequences, as well. Structural imaging is often needed to support the clinical TBI diagnosis. Accurate early diagnosis is essential for successful rehabilition and, thus, may also influence the patient’s outcome. Traumatic axonal injury and cortical contusions constitute the majority of traumatic brain lesions. Several studies have shown magnetic resonance imaging (MRI) to be superior to computed tomography (CT) in the detection of these lesions. However, traumatic brain injury often leads to persistent symptoms even in cases with few or no findings in conventional MRI. Aims and methods: The aim of this prospective study was to clarify the role of conventional MRI in the imaging of traumatic brain injury, and to investigate how to improve the radiologic diagnostics of TBI by using more modern diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) techniques. We estimated, in a longitudinal study, the visibility of the contusions and other intraparenchymal lesions in conventional MRI at one week and one year after TBI. We used DWI-based measurements to look for changes in the diffusivity of the normal-appearing brain in a case-control study. DTI-based tractography was used in a case-control study to evaluate changes in the volume, diffusivity, and anisotropy of the long association tracts in symptomatic TBI patients with no visible signs of intracranial or intraparenchymal abnormalities on routine MRI. We further studied the reproducibility of different tools to identify and measure white-matter tracts by using a DTI sequence suitable for clinical protocols. Results: Both the number and extent of visible traumatic lesions on conventional MRI diminished significantly with time. Slightly increased diffusion in the normal-appearing brain was a common finding at one week after TBI, but it was not significantly associated with the injury severity. Fractional anisotropy values, that represent the integrity of the white-matter tracts, were significantly diminished in several tracts in TBI patients compared to the control subjects. Compared to the cross-sectional ROI method, the tract-based analyses had better reproducibility to identify and measure white-matter tracts of interest by means of DTI tractography. Conclusions: As conventional MRI is still applied in clinical practice, it should be carried out soon after the injury, at least in symptomatic patients with negative CT scan. DWI-related brain diffusivity measurements may be used to improve the documenting of TBI. DTI tractography can be used to improve radiologic diagnostics in a symptomatic TBI sub-population with no findings on conventional MRI. Reproducibility of different tools to quantify fibre tracts vary considerably, which should be taken into consideration in the clinical DTI applications.Siirretty Doriast

    Unsupervised White Matter Fiber Clustering and Tract Probability Map Generation: Applications of a Gaussian Process framework for White Matter Fibers

    Get PDF
    With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This paper presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product based on Gaussian processes, between fibers which span a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects thereby avoiding the need for point parametrization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21 subject dataset
    corecore