17,956 research outputs found

    Cortical spatio-temporal dimensionality reduction for visual grouping

    Full text link
    The visual systems of many mammals, including humans, is able to integrate the geometric information of visual stimuli and to perform cognitive tasks already at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at single cell level and geometric processing by means of cells connectivity. We present a geometric model of such connectivities in the space of detected features associated to spatio-temporal visual stimuli, and show how they can be used to obtain low-level object segmentation. The main idea is that of defining a spectral clustering procedure with anisotropic affinities over datasets consisting of embeddings of the visual stimuli into higher dimensional spaces. Neural plausibility of the proposed arguments will be discussed

    Ultimate and practical limits of fluid-based mass detection with suspended microchannel resonators

    Get PDF
    Suspended microchannel resonators (SMRs) are an innovative approach to fluid-based microelectromechanical mass sensing that circumvents complete immersion of the sensor. By embedding the fluidics within the device itself, vacuum-based operation of the resonator becomes possible. This enables frequency shift-based mass detection with high quality factors, and hence sensitivity comparable to vacuum-based micromechanical resonators. Here we present a detailed analysis of the sensitivity of these devices, including consideration of fundamental and practical noise limits, and the important role of binding kinetics in sensing.We demonstrate that these devices show significant promise for protein detection. For larger, biologically-important targets such as rare whole virions, the required analysis time to flow sufficient sample through the sensor can become prohibitively long unless large parallel arrays of sensors or preconcentrators are employed

    Local and global gestalt laws: A neurally based spectral approach

    Get PDF
    A mathematical model of figure-ground articulation is presented, taking into account both local and global gestalt laws. The model is compatible with the functional architecture of the primary visual cortex (V1). Particularly the local gestalt law of good continuity is described by means of suitable connectivity kernels, that are derived from Lie group theory and are neurally implemented in long range connectivity in V1. Different kernels are compatible with the geometric structure of cortical connectivity and they are derived as the fundamental solutions of the Fokker Planck, the Sub-Riemannian Laplacian and the isotropic Laplacian equations. The kernels are used to construct matrices of connectivity among the features present in a visual stimulus. Global gestalt constraints are then introduced in terms of spectral analysis of the connectivity matrix, showing that this processing can be cortically implemented in V1 by mean field neural equations. This analysis performs grouping of local features and individuates perceptual units with the highest saliency. Numerical simulations are performed and results are obtained applying the technique to a number of stimuli.Comment: submitted to Neural Computatio

    Tracer Dispersion in Rough Open Cracks

    Get PDF
    Tracer dispersion is studied in an open crack where the two rough crack faces have been translated with respect to each other. The different dispersion regimes encountered in rough-wall Hele-Shaw cell are first introduced, and the geometric dispersion regime in the case of self-affine crack surfaces is treated in detail through perturbation analysis. It is shown that a line of tracer is progressively wrinkled into a self-affine curve with an exponent equal to that of the crack surface.This leads to a global dispersion coefficient which depends on the distance from the tracer inlet, but which is still proportional to the mean advection velocity. Besides, the tracer front is subjected to a local dispersion (as could be revealed by point measurements or echo experiments) very different from the global one. The expression of this anomalous local dispersion coefficient is also obtained

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    ABC of multi-fractal spacetimes and fractional sea turtles

    Full text link
    We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with qq-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes.Comment: 20 pages, 1 figure. v2: typos corrected, minor improvements of the tex

    Poly-Sarcosine and Poly(ethylene-glycol) interactions with proteins investigated using molecular dynamics simulations

    Get PDF
    Nanoparticles coated with hydrophilic polymers often show a reduction in unspecific interactions with the biological environment, which improves their biocompatibility. The molecular determinants of this reduction are not very well understood yet, and their knowledge may help improving nanoparticle design. Here we address, using molecular dynamics simulations, the interactions of human serum albumin, the most abundant serum protein, with two promising hydrophilic polymers used for the coating of therapeutic nanoparticles, poly(ethylene-glycol) and poly-sarcosine. By simulating the protein immersed in a polymer-water mixture, we show that the two polymers have a very similar affinity for the protein surface, both in terms of the amount of polymer adsorbed and also in terms of the type of amino acids mainly involved in the interactions. We further analyze the kinetics of adsorption and how it affects the polymer conformations. Minor differences between the polymers are observed in the thickness of the adsorption layer, that are related to the different degree of flexibility of the two molecules. In comparison poly-alanine, an isomer of poly-sarcosine known to self-aggregate and induce protein aggregation, shows a significantly larger affinity for the protein surface than PEG and PSar, which we show to be related not to a different patterns of interactions with the protein surface, but to the different way the polymer interacts with water

    Resolving structural variability in network models and the brain

    Get PDF
    Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar diagnostics presented in statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling---in addition to several summary statistics, including the mean clustering coefficient, shortest path length, and network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be embedded in anatomical brain regions tend to produce distributions that are similar to those extracted from the brain. We also find that network models hardcoded to display one network property do not in general also display a second, suggesting that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data.Comment: 24 pages, 11 figures, 1 table, supplementary material

    A Self-Assembled Microlensing Rotational Probe

    Get PDF
    A technique to measure microscopic rotational motion is presented. When a small fluorescent polystyrene microsphere is attached to a larger polystyrene microsphere, the larger sphere acts as a lens for the smaller microsphere and provides an optical signal that is a strong function of the azimuthal angle. We demonstrate the technique by measuring the rotational diffusion constant of the microsphere in solutions of varying viscosity and discuss the feasibility of using this probe to measure rotational motion of biological systems.Comment: 3 pages with 2 figures (eps format). Paper has been submitted to Applied Physics Letter
    corecore