396 research outputs found

    Staffing and Scheduling to Differentiate Service in Many-Server Service Systems

    Get PDF
    This dissertation contributes to the study of a queueing system with a single pool of multiple homogeneous servers to which multiple classes of customers arrive in independent streams. The objective is to devise appropriate staffing and scheduling policies to achieve specified class-dependent service levels expressed in terms of tail probability of delays. Here staffing and scheduling are concerned with specifying a time-varying number of servers and assigning newly idle servers to a waiting customer from one of K classes, respectively. For this purpose, we propose new staffing-and-scheduling solutions under the critically-loaded and overloaded regimes. In both cases, the proposed solutions are both time dependent (coping with the time variability in the arrival pattern) and state dependent (capturing the stochastic variability in service and arrival times). We prove heavy-traffic limit theorems to substantiate the effectiveness of our proposed staffing and scheduling policies. We also conduct computer simulation experiments to provide engineering confirmation and practical insight

    Extracting Reward Functions from Diffusion Models

    Full text link
    Diffusion models have achieved remarkable results in image generation, and have similarly been used to learn high-performing policies in sequential decision-making tasks. Decision-making diffusion models can be trained on lower-quality data, and then be steered with a reward function to generate near-optimal trajectories. We consider the problem of extracting a reward function by comparing a decision-making diffusion model that models low-reward behavior and one that models high-reward behavior; a setting related to inverse reinforcement learning. We first define the notion of a relative reward function of two diffusion models and show conditions under which it exists and is unique. We then devise a practical learning algorithm for extracting it by aligning the gradients of a reward function -- parametrized by a neural network -- to the difference in outputs of both diffusion models. Our method finds correct reward functions in navigation environments, and we demonstrate that steering the base model with the learned reward functions results in significantly increased performance in standard locomotion benchmarks. Finally, we demonstrate that our approach generalizes beyond sequential decision-making by learning a reward-like function from two large-scale image generation diffusion models. The extracted reward function successfully assigns lower rewards to harmful images

    A stochastic analysis of resource sharing with logarithmic weights

    Full text link
    The paper investigates the properties of a class of resource allocation algorithms for communication networks: if a node of this network has xx requests to transmit, then it receives a fraction of the capacity proportional to log(1+x)\log(1+x), the logarithm of its current load. A detailed fluid scaling analysis of such a network with two nodes is presented. It is shown that the interaction of several time scales plays an important role in the evolution of such a system, in particular its coordinates may live on very different time and space scales. As a consequence, the associated stochastic processes turn out to have unusual scaling behaviors. A heavy traffic limit theorem for the invariant distribution is also proved. Finally, we present a generalization to the resource sharing algorithm for which the log\log function is replaced by an increasing function. Possible generalizations of these results with J>2J>2 nodes or with the function log\log replaced by another slowly increasing function are discussed.Comment: Published at http://dx.doi.org/10.1214/14-AAP1057 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore