39 research outputs found

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    Provision of Flexibility Services by Industrial Energy Systems

    Get PDF

    Expansive and collapsing behaviour of volume change soils

    Get PDF
    This thesis is designed to achieve three goals: Goal One - to introduce the reader to soils exhibiting expansive and/or collapsing behaviour; Goal Two - to provide an in depth understanding of aspects of this behaviour, obtained from an extensive study of these soil types; and, Goal Three - to serve as a reference for future research work (a recommendation for further research proposed in Chapter Ten of this thesis). The thesis is divided in two main parts. In the first part representative soil types were selected on the basis of their properties and expected engineering behaviour. The soil structure and clay minerals were also studied in part one of this thesis. The second part of the thesis deals with aspects of expansive and collapsing behaviour of soils. Chapter three provides the introduction to the subsequent chapters on expansive and collapsing behaviour of volume change soils

    Spin effects in single-electron transistors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2005.Includes bibliographical references (p. 169-175).Basic electron transport phenomena observed in single-electron transistors (SETs) are introduced, such as Coulomb-blockade diamonds, inelastic cotunneling thresholds, the spin-1/2 Kondo effect, and Fano interference. With a magnetic field parallel to the motion of the electrons, single-particle energy levels undergo Zeeman splitting according to their spin. The g-factor describing this splitting is extracted in the spin-flip inelastic cotunneling regime. The Kondo splitting is linear and slightly greater than the Zeeman splitting. At zero magnetic field, the spin triplet excited state energy and its dependence on gate voltage are measured via sharp Kondo peaks superimposed on inelastic cotunneling thresholds. Singlet-triplet transitions and an avoided crossing are analyzed with a simple two-level model, which provides information about the exchange energy and the orbital mixing. With four electrons on the quantum dot, the spin triplet state has two characteristic energy scales, consistent with a two-stage Kondo effect description. The low energy scale extracted from a nonequilibrium measurement is larger than those extracted in equilibrium.by Ghislain Granger.Ph.D

    Pertanika Journal of Science & Technology

    Get PDF

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    Space station WP-04 power system preliminary analysis and design document, volume 3

    Get PDF
    Rocketdyne plans to generate a system level specification for the Space Station Electric Power System (EPS) in order to facilitate the usage, accountability, and tracking of overall system level requirements. The origins and status of the verification planning effort are traced and an overview of the Space Station program interactions are provided. The work package level interfaces between the EPS and the other Space Station work packages are outlined. A trade study was performed to determine the peaking split between PV and SD, and specifically to compare the inherent total peaking capability with proportionally shared peaking. In order to determine EPS cost drivers for the previous submittal of DRO2, the life cycle cost (LCC) model was run to identify the more significant costs and the factors contributing to them

    Full Proceedings, 2018

    Get PDF
    Full conference proceedings for the 2018 International Building Physics Association Conference hosted at Syracuse University
    corecore