20 research outputs found

    Breathing pattern characterization in patients with respiratory and cardiac failure

    Get PDF
    El objetivo principal de la tesis es estudiar los patrones respiratorios de pacientes en proceso de extubaci贸n y pacientes con insuficiencia cardiaca cr贸nica (CHF), a partirde la se帽al de flujo respiratorio. La informaci贸n obtenida de este estudio puede contribuir a la comprensi贸n de los procesos fisiol贸gicos subyacentes,y ayudar en el diagn贸stico de estos pacientes. Uno de los problemas m谩s desafiantes en unidades de cuidados intensivos es elproceso de desconexi贸n de pacientes asistidos mediante ventilaci贸n mec谩nica. M谩s del 10% de pacientes que se extuban tienen que ser reintubados antes de 48 horas. Una prueba fallida puede ocasionar distr茅s cardiopulmonar y una mayor tasa de mortalidad. Se caracteriz贸 el patr贸n respiratorio y la interacci贸n din谩mica entre la frecuenciacardiaca y frecuencia respiratoria, para obtener 铆ndices no invasivos que proporcionen una mayor informaci贸n en el proceso de destete y mejorar el 茅xito de la desconexi贸n.Las se帽ales de flujo respiratorio y electrocardiogr谩fica utilizadas en este estudio fueron obtenidas durante 30 minutos aplicando la prueba de tubo en T. Se compararon94 pacientes que tuvieron 茅xito en el proceso de extubaci贸n (GE), 39 pacientes que fracasaron en la prueba al mantener la respiraci贸n espont谩nea (GF), y 21 pacientes quesuperaron la prueba con 茅xito y fueron extubados, pero antes de 48 horas tuvieron que ser reintubados (GR). El patr贸n respiratorio se caracteriz贸 a partir de las series temporales. Se aplic贸 la din谩mica simb贸lica conjunta a las series correspondientes a las frecuencias cardiaca y respiratoria, para describir las interacciones cardiorrespiratoria de estos pacientes. T茅cnicas de "clustering", ecualizaci贸n del histograma, clasificaci贸n mediante m谩quinasde soporte vectorial (SVM) y t茅cnicas de validaci贸n permitieron seleccionar el conjunto de caracter铆sticas m谩s relevantes. Se propuso una nueva m茅trica B (铆ndice de equilibrio) para la optimizaci贸n de la clasificaci贸n con muestras desbalanceadas. Basado en este nuevo 铆ndice, aplicando SVM, se seleccionaron las mejores caracter铆sticas que manten铆an el mejor equilibrio entre sensibilidad y especificidad en todas las clasificaciones. El mejor resultado se obtuvo considerando conjuntamente la precisi贸n y el valor de B, con una clasificaci贸n del 80% entre los grupos GE y GF, con 6 caracter铆sticas. Clasificando GE vs. el resto de los pacientes, el mejor resultado se obtuvo con 9 caracter铆sticas, con 81%. Clasificando GR vs. GE y GR vs. el resto de pacientes la precisi贸n fue del 83% y 81% con 9 y 10 caracter铆sticas, respectivamente. La tasa de mortalidad en pacientes con CHF es alta y la estratificaci贸n de estospacientes en funci贸n del riesgo es uno de los principales retos de la cardiolog铆a contempor谩nea. Estos pacientes a menudo desarrollan patrones de respiraci贸nperi贸dica (PB) incluyendo la respiraci贸n de Cheyne-Stokes (CSR) y respiraci贸n peri贸dica sin apnea. La respiraci贸n peri贸dica en estos pacientes se ha asociadocon una mayor mortalidad, especialmente en pacientes con CSR. Por lo tanto, el estudio de estos patrones respiratorios podr铆a servir como un marcador de riesgo y proporcionar una mayor informaci贸n sobre el estado fisiopatol贸gico de pacientes con CHF. Se pretende identificar la condici贸n de los pacientes con CHFde forma no invasiva mediante la caracterizaci贸n y clasificaci贸n de patrones respiratorios con PBy respiraci贸n no peri贸dica (nPB), y patr贸n de sujetos sanos, a partir registros de 15minutos de la se帽al de flujo respiratorio. Se caracteriz贸 el patr贸n respiratorio mediante un estudio tiempo-frecuencia estacionario y no estacionario, de la envolvente de la se帽al de flujo respiratorio. Par谩metros relacionados con la potencia espectral de la envolvente de la se帽al presentaron losmejores resultados en la clasificaci贸n de sujetos sanos y pacientes con CHF con CSR, PB y nPB. Las curvas ROC validan los resultados obtenidos. Se aplic贸 la "correntropy" para una caracterizaci贸n tiempo-frecuencia mas completa del patr贸n respiratorio de pacientes con CHF. La "corretronpy" considera los momentos estad铆sticos de orden superior, siendo m谩s robusta frente a los "outliers". Con la densidad espectral de correntropy (CSD) tanto la frecuencia de modulaci贸n como la dela respiraci贸n se representan en su posici贸n real en el eje frecuencial. Los pacientes con PB y nPB, presentan diferentesgrados de periodicidad en funci贸n de su condici贸n, mientras que los sujetos sanos no tienen periodicidad marcada. Con 煤nico par谩metro se obtuvieron resultados del 88.9% clasificando pacientes PB vs. nPB, 95.2% para CHF vs. sanos, 94.4% para nPB vs. sanos.The main objective of this thesis is to study andcharacterize breathing patterns through the respiratory flow signal applied to patients on weaning trials from mechanicalventilation and patients with chronic heart failure (CHF). The aim is to contribute to theunderstanding of the underlying physiological processes and to help in the diagnosis of these patients. One of the most challenging problems in intensive care units is still the process ofdiscontinuing mechanical ventilation, as over 10% of patients who undergo successfulT-tube trials have to be reintubated in less than 48 hours. A failed weaning trial mayinduce cardiopulmonary distress and carries a higher mortality rate. We characterize therespiratory pattern and the dynamic interaction between heart rate and breathing rate toobtain noninvasive indices that provide enhanced information about the weaningprocess and improve the weaning outcome. This is achieved through a comparison of 94 patients with successful trials (GS), 39patients who fail to maintain spontaneous breathing (GF), and 21 patients who successfully maintain spontaneous breathing and are extubated, but require thereinstitution of mechanical ventilation in less than 48 hours because they are unable tobreathe (GR). The ECG and the respiratory flow signals used in this study were acquired during T-tube tests and last 30 minute. The respiratory pattern was characterized by means of a number of respiratory timeseries. Joint symbolic dynamics applied to time series of heart rate and respiratoryfrequency was used to describe the cardiorespiratory interactions of patients during theweaning trial process. Clustering, histogram equalization, support vector machines-based classification (SVM) and validation techniques enabled the selection of the bestsubset of input features. We defined a new optimization metric for unbalanced classification problems, andestablished a new SVM feature selection method, based on this balance index B. The proposed B-based SVM feature selection provided a better balance between sensitivityand specificity in all classifications. The best classification result was obtained with SVM feature selection based on bothaccuracy and the balance index, which classified GS and GFwith an accuracy of 80%, considering 6 features. Classifying GS versus the rest of patients, the best result wasobtained with 9 features, 81%, and the accuracy classifying GR versus GS, and GR versus the rest of the patients was 83% and 81% with 9 and 10 features, respectively.The mortality rate in CHF patients remains high and risk stratification in these patients isstill one of the major challenges of contemporary cardiology. Patients with CHF oftendevelop periodic breathing patterns including Cheyne-Stokes respiration (CSR) and periodic breathing without apnea. Periodic breathing in CHF patients is associated withincreased mortality, especially in CSR patients. Therefore it could serve as a risk markerand can provide enhanced information about thepathophysiological condition of CHF patients. The main goal of this research was to identify CHF patients' condition noninvasively bycharacterizing and classifying respiratory flow patterns from patients with PB and nPBand healthy subjects by using 15-minute long respiratory flow signals. The respiratory pattern was characterized by a stationary and a nonstationary time-frequency study through the envelope of the respiratory flow signal. Power-related parameters achieved the best results in all of the classifications involving healthy subjects and CHF patients with CSR, PB and nPB and the ROC curves validated theresults obtained for the identification of different respiratory patterns. We investigated the use of correntropy for the spectral characterization of respiratory patterns in CHF patients. The correntropy function accounts for higher-order moments and is robust to outliers. Due to the former property, the respiratory and modulationfrequencies appear at their actual locations along the frequency axis in the correntropy spectral density (CSD). The best results were achieved with correntropy and CSD-related parameters that characterized the power in the modulation and respiration discriminant bands, definedas a frequency interval centred on the modulation and respiration frequency peaks,respectively. All patients, i.e. both PB and nPB, exhibit various degrees of periodicitydepending on their condition, whereas healthy subjects have no pronounced periodicity.This fact led to excellent results classifying PB and nPB patients 88.9%, CHF versushealthy 95.2%, and nPB versus healthy 94.4% with only one parameter.Postprint (published version

    Mathematics and Digital Signal Processing

    Get PDF
    Modern computer technology has opened up new opportunities for the development of digital signal processing methods. The applications of digital signal processing have expanded significantly and today include audio and speech processing, sonar, radar, and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others. This Special Issue is aimed at wide coverage of the problems of digital signal processing, from mathematical modeling to the implementation of problem-oriented systems. The basis of digital signal processing is digital filtering. Wavelet analysis implements multiscale signal processing and is used to solve applied problems of de-noising and compression. Processing of visual information, including image and video processing and pattern recognition, is actively used in robotic systems and industrial processes control today. Improving digital signal processing circuits and developing new signal processing systems can improve the technical characteristics of many digital devices. The development of new methods of artificial intelligence, including artificial neural networks and brain-computer interfaces, opens up new prospects for the creation of smart technology. This Special Issue contains the latest technological developments in mathematics and digital signal processing. The stated results are of interest to researchers in the field of applied mathematics and developers of modern digital signal processing systems

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here

    Data Science: Measuring Uncertainties

    Get PDF
    With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing
    corecore