27,161 research outputs found

    Diffusion maps and local models for wind power prediction

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-33266-1_70Proceedings of 22nd International Conference on Artificial Neural Networks, Lausanne, Switzerland, September 11-14, 2012In this work we will apply Diffusion Maps (DM), a recent technique for dimensionality reduction and clustering, to build local models for wind energy forecasting. We will compare ridge regression models for K–means clusters obtained over DM features, against the models obtained for clusters constructed over the original meteorological data or principal components, and also against a global model. We will see that a combination of the DM model for the low wind power region and the global model elsewhere outperforms other options.With partial support from grant TIN2010-21575-C02-01 of Spain’s Ministerio de EconomĂ­a y Competitividad and the UAM–ADIC Chair for Machine Learning in Modelling and Prediction. The first author is also supported by an FPI-UAM grant and kindly thanks the Applied Mathematics Department of Yale University for receiving her during a visit. The second author is supported by the FPU-MEC grant AP2008-00167. We also thank Red ElĂ©ctrica de España, Spain’s TSO, for providing historic wind energy dat

    Origin of Small-Scale Anisotropies in Galactic Cosmic Rays

    Full text link
    The arrival directions of Galactic cosmic rays (CRs) are highly isotropic. This is expected from the presence of turbulent magnetic fields in our Galactic environment that repeatedly scatter charged CRs during propagation. However, various CR observatories have identified weak anisotropies of various angular sizes and with relative intensities of up to a level of 1 part in 1,000. Whereas large-scale anisotropies are generally predicted by standard diffusion models, the appearance of small-scale anisotropies down to an angular size of 10 degrees is surprising. In this review, we summarise the current experimental situation for both the large-scale and small-scale anisotropies. We address some of the issues in comparing different experimental results and remaining questions in interpreting the observed large-scale anisotropies. We then review the standard diffusive picture and its difficulty in producing the small-scale anisotropies. Having set the stage, we review the various ideas and models put forward for explaining the small-scale anisotropies.Comment: 60 pages, 16 figures; invited review for Progress in Particle and Nuclear Physics (PPNP

    Testing the Dark Matter Annihilation Model for the WMAP Haze

    Full text link
    Analyses have found a "haze" of anomalous microwave emission surrounding the Galactic Center in the WMAP sky maps. A recent study using Fermi data detected a similar haze in the gamma-ray. Several studies have modeled these hazes as radiation from the leptonic byproducts of dark matter annihilations, and arguably no convincing astrophysical alternative has been suggested. We discuss the characteristics of astrophysical cosmic ray sources that could potentially explain this microwave and gamma-ray emission. The most promising astrophysical scenarios involve cosmic ray sources that are clustered such that many fall within ~1 kpc of the Galactic Center. For example, we show that several hundred Galactic Center supernovae in the last million years plus a diffusion-hardened electron spectrum may be consistent with present constraints on this emission. Alternatively, it could be due to a burst of activity probably associated with Sagittarius A* occurring ~1 Myr ago and producing >10^51 erg in cosmic ray electrons. Different models predict different trends for the spectral index of the microwave and gamma-ray spectrum as a function of angle from the Galactic Center that should be robust to cosmic ray propagation uncertainties. In particular, if the haze is from dark matter annihilations, it should have a very hard microwave and gamma-ray spectrum for which the spectral shape does not change significantly with angle, which we argue would be difficult to achieve with any astrophysical mechanism. Observations with the Planck and Fermi satellites can distinguish between viable haze models using these signatures.Comment: 15 pages, 7 figures, accepted to MNRA

    A review of wildland fire spread modelling, 1990-present 3: Mathematical analogues and simulation models

    Full text link
    In recent years, advances in computational power and spatial data analysis (GIS, remote sensing, etc) have led to an increase in attempts to model the spread and behvaiour of wildland fires across the landscape. This series of review papers endeavours to critically and comprehensively review all types of surface fire spread models developed since 1990. This paper reviews models of a simulation or mathematical analogue nature. Most simulation models are implementations of existing empirical or quasi-empirical models and their primary function is to convert these generally one dimensional models to two dimensions and then propagate a fire perimeter across a modelled landscape. Mathematical analogue models are those that are based on some mathematical conceit (rather than a physical representation of fire spread) that coincidentally simulates the spread of fire. Other papers in the series review models of an physical or quasi-physical nature and empirical or quasi-empirical nature. Many models are extensions or refinements of models developed before 1990. Where this is the case, these models are also discussed but much less comprehensively.Comment: 20 pages + 9 pages references + 1 page figures. Submitted to the International Journal of Wildland Fir

    Modeling radiation belt radial diffusion in ULF wave fields: 1. Quantifying ULF wave power at geosynchronous orbit in observations and in global MHD model

    Get PDF
    [1] To provide critical ULF wave field information for radial diffusion studies in the radiation belts, we quantify ULF wave power (f = 0.5–8.3 mHz) in GOES observations and magnetic field predictions from a global magnetospheric model. A statistical study of 9 years of GOES data reveals the wave local time distribution and power at geosynchronous orbit in field-aligned coordinates as functions of wave frequency, solar wind conditions (Vx, ΔPd and IMF Bz) and geomagnetic activity levels (Kp, Dst and AE). ULF wave power grows monotonically with increasing solar wind Vx, dynamic pressure variations ΔPd and geomagnetic indices in a highly correlated way. During intervals of northward and southward IMF Bz, wave activity concentrates on the dayside and nightside sectors, respectively, due to different wave generation mechanisms in primarily open and closed magnetospheric configurations. Since global magnetospheric models have recently been used to trace particles in radiation belt studies, it is important to quantify the wave predictions of these models at frequencies relevant to electron dynamics (mHz range). Using 27 days of real interplanetary conditions as model inputs, we examine the ULF wave predictions modeled by the Lyon-Fedder-Mobarry magnetohydrodynamic code. The LFM code does well at reproducing, in a statistical sense, the ULF waves observed by GOES. This suggests that the LFM code is capable of modeling variability in the magnetosphere on ULF time scales during typical conditions. The code provides a long-missing wave field model needed to quantify the interaction of radiation belt electrons with realistic, global ULF waves throughout the inner magnetosphere

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie

    Analysis of GeV-band gamma-ray emission from SNR RX J1713.7-3946

    Full text link
    RX J1713.7-3946 is the brightest shell-type Supernova remnant (SNR) of the TeV gamma-ray sky. Earlier Fermi-LAT results on low-energy gamma-ray emission suggested that, despite large uncertainties in the background determination, the spectrum is inconsistent with a hadronic origin. We update the GeV-band spectra using improved estimates for the diffuse galactic gamma-ray emission and more than doubled data volume. We further investigate the viability of hadronic emission models for RX J1713.7-3946. We produced a high-resolution map of the diffuse Galactic gamma-ray background corrected for HI self-absorption and used it in the analysis of more than 5~years worth of Fermi-LAT data. We used hydrodynamic scaling relations and a kinetic transport equation to calculate the acceleration and propagation of cosmic-rays in SNR. We then determined spectra of hadronic gamma-ray emission from RX J1713.7-3946, separately for the SNR interior and the cosmic-ray precursor region of the forward shock, and computed flux variations that would allow to test the model with observations. We find that RX J1713.7-3946 is now detected by Fermi-LAT with very high statistical significance, and the source morphology is best described by that seen in the TeV band. The measured spectrum of RX J1713.7-3946 is hard with index gamma=1.53 +/- 0.07, and the integral flux above 500 MeV is F = (5.5 +/- 1.1)e-9 photons/cm^2/s. We demonstrate that scenarios based on hadronic emission from the cosmic-ray precursor region are acceptable for RX J1713.7-3946, and we predict a secular flux increase at a few hundred GeV at the level of around 15% over 10 years, which may be detectable with the upcoming CTA observatory.Comment: 9 pages, accepted for publication in Astronomy & Astrophysic

    Vertical Tracer Mixing in Hot Jupiter Atmospheres

    Full text link
    Aerosols appear to be ubiquitous in close-in gas giant atmospheres, and disequilibrium chemistry likely impacts the emergent spectra of these planets. Lofted aerosols and disequilibrium chemistry are caused by vigorous vertical transport in these heavily irradiated atmospheres. Here we numerically and analytically investigate how vertical transport should change over the parameter space of spin-synchronized gas giants. In order to understand how tracer transport depends on planetary parameters, we develop an analytic theory to predict vertical velocities and mixing rates (KzzK_\mathrm{zz}) and compare the results to our numerical experiments. We find that both our theory and numerical simulations predict that, if the vertical mixing rate is described by an eddy diffusivity, then this eddy diffusivity KzzK_\mathrm{zz} should increase with increasing equilibrium temperature, decreasing frictional drag strength, and increasing chemical loss timescales. We find that the transition in our numerical simulations between circulation dominated by a superrotating jet and that with solely day-to-night flow causes a marked change in the vertical velocity structure and tracer distribution. The mixing ratio of passive tracers is greatest for intermediate drag strengths that corresponds to this transition between a superrotating jet with columnar vertical velocity structure and day-to-night flow with upwelling on the dayside and downwelling on the nightside. Lastly, we present analytic solutions for KzzK_\mathrm{zz} as a function of planetary effective temperature, chemical loss timescales, and other parameters, for use as input to one-dimensional chemistry models of spin-synchronized gas giant atmospheres.Comment: 25 pages, 12 figures, Accepted at Ap

    Magnetic fields in supernova remnants and pulsar-wind nebulae

    Full text link
    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 microGauss. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a non-negligible gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording change in Abstrac
    • 

    corecore