28,539 research outputs found

    Diffusion limits for discrete velocity models in a thin gap

    Get PDF
    We consider discrete kinetic models of a gas moving in a small gap with thickness h. Under an appropriate scaling of the variables, we introduce a formal series expansion to study the limit h --> 0. As a necessary condition for the validity of the expansion we derive a nonlinear diffusion equation

    Effects of reduced discrete coupling on filament tension in excitable media

    Get PDF
    Wave propagation in the heart has a discrete nature, because it is mediated by discrete intercellular connections via gap junctions. Although effects of discreteness on wave propagation have been studied for planar traveling waves and vortexes (spiral waves) in two dimensions, its possible effects on vortexes (scroll waves) in three dimensions are not yet explored. In this article, we study the effect of discrete cell coupling on the filament dynamics in a generic model of an excitable medium. We find that reduced cell coupling decreases the line tension of scroll wave filaments and may induce negative filament tension instability in three-dimensional excitable lattices.Peer Reviewe

    Three basic issues concerning interface dynamics in nonequilibrium pattern formation

    Get PDF
    These are lecture notes of a course given at the 9th International Summer School on Fundamental Problems in Statistical Mechanics, held in Altenberg, Germany, in August 1997. In these notes, we discuss at an elementary level three themes concerning interface dynamics that play a role in pattern forming systems: (i) We briefly review three examples of systems in which the normal growth velocity is proportional to the gradient of a bulk field which itself obeys a Laplace or diffusion type of equation (solidification, viscous fingers and streamers), and then discuss why the Mullins-Sekerka instability is common to all such gradient systems. (ii) Secondly, we discuss how underlying an effective interface description of systems with smooth fronts or transition zones, is the assumption that the relaxation time of the appropriate order parameter field(s) in the front region is much smaller than the time scale of the evolution of interfacial patterns. Using standard arguments we illustrate that this is generally so for fronts that separate two (meta)stable phases: in such cases, the relaxation is typically exponential, and the relaxation time in the usual models goes to zero in the limit in which the front width vanishes. (iii) We finally summarize recent results that show that so-called ``pulled'' or ``linear marginal stability'' fronts which propagate into unstable states have a very slow universal power law relaxation. This slow relaxation makes the usual ``moving boundary'' or ``effective interface'' approximation for problems with thin fronts, like streamers, impossible.Comment: 48 pages, TeX with elsart style file (included), 9 figure

    Nonlinear physics of electrical wave propagation in the heart: a review

    Get PDF
    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that are triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media and their application to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact in cardiac arrhythmias.Peer ReviewedPreprin

    Dynamic Properties of Molecular Motors in Burnt-Bridge Models

    Full text link
    Dynamic properties of molecular motors that fuel their motion by actively interacting with underlying molecular tracks are studied theoretically via discrete-state stochastic ``burnt-bridge'' models. The transport of the particles is viewed as an effective diffusion along one-dimensional lattices with periodically distributed weak links. When an unbiased random walker passes the weak link it can be destroyed (``burned'') with probability p, providing a bias in the motion of the molecular motor. A new theoretical approach that allows one to calculate exactly all dynamic properties of motor proteins, such as velocity and dispersion, at general conditions is presented. It is found that dispersion is a decreasing function of the concentration of bridges, while the dependence of dispersion on the burning probability is more complex. Our calculations also show a gap in dispersion for very low concentrations of weak links which indicates a dynamic phase transition between unbiased and biased diffusion regimes. Theoretical findings are supported by Monte Carlo computer simulations.Comment: 14 pages. Submitted to J. Stat. Mec

    Modeling and Simulation of a Fluttering Cantilever in Channel Flow

    Get PDF
    Characterizing the dynamics of a cantilever in channel flow is relevant to applications ranging from snoring to energy harvesting. Aeroelastic flutter induces large oscillating amplitudes and sharp changes with frequency that impact the operation of these systems. The fluid-structure mechanisms that drive flutter can vary as the system parameters change, with the stability boundary becoming especially sensitive to the channel height and Reynolds number, especially when either or both are small. In this paper, we develop a coupled fluid-structure model for viscous, two-dimensional channel flow of arbitrary shape. Its flutter boundary is then compared to results of two-dimensional direct numerical simulations to explore the model's validity. Provided the non-dimensional channel height remains small, the analysis shows that the model is not only able to replicate DNS results within the parametric limits that ensure the underlying assumptions are met, but also over a wider range of Reynolds numbers and fluid-structure mass ratios. Model predictions also converge toward an inviscid model for the same geometry as Reynolds number increases

    The binding dynamics of tropomyosin on actin

    Get PDF
    We discuss a theoretical model for the cooperative binding dynamics of tropomyosin to actin filaments. Tropomyosin binds to actin by occupying seven consecutive monomers. The model includes a strong attraction between attached tropomyosin molecules. We start with an empty lattice and show that the binding goes through several stages. The first stage represents fast initial binding and leaves many small vacancies between blocks of bound molecules. In the second stage the vacancies annihilate slowly as tropomyosin molecules detach and re-attach. Finally the system approaches equilibrium. Using a grain-growth model and a diffusion-coagulation model we give analytical approximations for the vacancy density in all regimes.Comment: REVTeX, 10 pages, 9 figures; to appear in Biophysical Journal; minor correction
    • …
    corecore