157 research outputs found

    Qualitative properties of α\alpha-fair policies in bandwidth-sharing networks

    Full text link
    We consider a flow-level model of a network operating under an α\alpha-fair bandwidth sharing policy (with α>0\alpha>0) proposed by Roberts and Massouli\'{e} [Telecomunication Systems 15 (2000) 185-201]. This is a probabilistic model that captures the long-term aspects of bandwidth sharing between users or flows in a communication network. We study the transient properties as well as the steady-state distribution of the model. In particular, for α≥1\alpha\geq1, we obtain bounds on the maximum number of flows in the network over a given time horizon, by means of a maximal inequality derived from the standard Lyapunov drift condition. As a corollary, we establish the full state space collapse property for all α≥1\alpha\geq1. For the steady-state distribution, we obtain explicit exponential tail bounds on the number of flows, for any α>0\alpha>0, by relying on a norm-like Lyapunov function. As a corollary, we establish the validity of the diffusion approximation developed by Kang et al. [Ann. Appl. Probab. 19 (2009) 1719-1780], in steady state, for the case where α=1\alpha=1 and under a local traffic condition.Comment: Published in at http://dx.doi.org/10.1214/12-AAP915 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stein's method for steady-state diffusion approximations

    Full text link
    Diffusion approximations have been a popular tool for performance analysis in queueing theory, with the main reason being tractability and computational efficiency. This dissertation is concerned with establishing theoretical guarantees on the performance of steady-state diffusion approximations of queueing systems. We develop a modular framework based on Stein's method that allows us to establish error bounds, or convergence rates, for the approximations. We apply this framework three queueing systems: the Erlang-C, Erlang-A, and M/Ph/n+MM/Ph/n+M systems. The former two systems are simpler and allow us to showcase the full potential of the framework. Namely, we prove that both Wasserstein and Kolmogorov distances between the stationary distribution of a normalized customer count process, and that of an appropriately defined diffusion process decrease at a rate of 1/R1/\sqrt{R}, where RR is the offered load. Futhermore, these error bounds are \emph{universal}, valid in any load condition from lightly loaded to heavily loaded. For the Erlang-C model, we also show that a diffusion approximation with state-dependent diffusion coefficient can achieve a rate of convergence of 1/R1/R, which is an order of magnitude faster when compared to approximations with constant diffusion coefficients.Comment: PhD Thesi
    • …
    corecore