2,901 research outputs found

    A Comparative Overview of Geophysical Methods

    Get PDF
    This report was prepared with support from the Air Force Research Laboratory, under contract FA8718-07-C-0021.The shallow subsurface structure of the Earth is important to understand for many economic and safety reasons. The problem is usually difficult due to complexity of the earth’s subsurface processes especially near the surface. A number of geophysical methods are used for this purpose using different physical characteristics of the Earth materials. A particular geophysical method illuminates part of the problem, but a reliable solution can only be found by combining results of different methods. In order to synthesize information from different geophysical methods, it is important to understand their similarities and differences. The aim of this study is to correlate the basic principles of geophysical methods side-by-side starting from fundamental equations. This study reveals that many analogies exist among these methods both in their mathematical formulation, and sometimes, in ways they are used in the geophysical applications

    Three-dimensional inversion of transient-electromagnetic data: A comparative study

    Get PDF
    Inversion of transient-electromagnetic (TEM) data arising from galvanic types of sources is approached by two different methods. Both methods reconstruct the subsurface three-dimensional (3D) electrical conductivity properties directly in the time-domain. A principal difference is given by the scale of the inversion problems to be solved. The first approach represents a small-scale 3D inversion and is based upon well-known tools. It uses a stabilized unconstrained least-squares inversion algorithm in combination with an existing 3D forward modeling solver and is customized to invert for 3D earth models with a limited model complexity. The limitation to only as many model unknowns as typical for classical least-squares problems involves arbitrary and rather unconventional types of model parameters. The inversion scheme has mainly been developed for the purpose of refining a priori known 3D underground structures by means of an inversion. Therefore, a priori information is an important requirement to design a model such that its limited degrees of freedom describe the structures of interest. The inversion is successfully applied to data from a long-offset TEM survey at the active volcano Merapi in Central Java (Indonesia). Despite the restriction of a low model complexity, the scheme offers some versatility as it can be adapted easily to various kinds of model structures. The interpretation of the resistivity images obtained by the inversion have substantially advanced the structural knowledge about the volcano. The second part of this work presents a theoretically more elaborate scheme. It employs imaging techniques originally developed for seismic wavefields. Large-scale 3D problems arising from the inversion for finely parameterized and arbitrarily complicated earth models are addressed by the method. The algorithm uses a conjugate-gradient search for the minimum of an error functional, where the gradient information is obtained via migration or backpropagation of the differences between the data observations and predictions back into the model in reverse time. Treatment for electric field and time derivative of the magnetic field data is given for the specification of the cost functional gradients. The inversion algorithm is successfully applied to a synthetic TEM data set over a conductive anomaly embedded in a half-space. The example involves a total number of more than 376000 model unknowns. The realization of migration techniques for diffusive EM fields involves the backpropagation of a residual field. The residual field excitation originates from the actual receiver positions and is continued during the simulated time range of the measurements. An explicit finite-difference time-stepping scheme is developed in advance of the imaging scheme in order to accomplish both the forward simulation and backpropagation of 3D EM fields. The solution uses a staggered grid and a modified version of the DuFort-Frankel stabilization method and is capable of simulating non-causal fields due to galvanic types of sources. Its parallel implementation allows for reasonable computation times, which are inherently high for explicit time-stepping schemes

    Analysis of a whole-space transient electromagnetic field in 2.5-dimensional FDTD geoelectric modeling

    Get PDF
    Mine water inrush poses a serious threat to the safe production of coal mines in China. The transient electromagnetic method (TEM) on the ground has been applied to explore water-bearing structures, but the resolution is low. Therefore, some geophysicists in China moved the TEM onto underground coal mine roadways and obtained good results at the end of the last century. Although the TEM has been applied in mining for many years, there are so few theoretical studies that the data interpretation is not accurate. It is necessary to study the transient electromagnetic eld diffusion in the entire space with physical or numerical simulation methods. First, based on the diffusion equations, we deduced the wave number domain equations, whose whole-space electromagnetic eld is excited by a 3-D source in a 2-D geoelectric model; then, we derived the 2.5-D nite-difference time domain equations. At the beginning of the calculation, we gave the grid nodes near the source the initial values with the cosine ltering method. To improve the calculating ef ciency, the time intervals gradually increased with time. At the end of the calculation, we transformed the calculating results from the wave number domain to the space domain by tting the segmented exponential function. Compared with the analytical solutions, the numerical solutions are accurate, and the algorithm is reliable and ef cient. The simulation results of a collapse-column model show that the transient electromagnetic eld diffusion in the entire space is dominated by low-resistivity bodies.This work was supported in part by the Major State Basic Research Development Program of China(973 Program) under Grant 2013CB227900, in part by the National Natural Science Foundation of China under Grant 41304113, in part by the China Scholarship Council under Grant 201606425004, and in part by the National Research Foundation, South Africa under Grant IFR160118156967 and Grant RDYR160404161474.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639am2017Electrical, Electronic and Computer Engineerin

    Evidence of the theoretically predicted seismo-magnetic conversion

    Get PDF
    We acknowledge the Geophysical Journal International and the Association/Society and Blackwell Publishing. The definitive version is available at www.wileyinterscience.com. The reference is : Bordes, C., L. Jouniaux, S. Garambois, M. Dietrich, J.-P. Pozzi, and S. Gaffet, Evidence of the theoretically predicted seismo-magnetic conversion, G.J.I., 174, issue 2, 489-504, doi:10.1111/j.1365-246X.2008.03828.xInternational audienceSeismo-electromagnetic phenomena in porous media arise from seismic wave-induced fluid motion in the pore space, which perturbs the equilibrium of the electric double layer. This paper describes with details the original experimental apparatus built within the ultra-shielded chamber of the Low Noise Underground Laboratory of Rustrel (France). We measured seismo-magnetic conversions in moist sand using two induction magnetometers, and a pneumatic seismic source to generate the seismic wave propagation. We ensured to avoid the magnetometer vibrations, which could induce strong disturbances from induction origin. Interpretation of the data is improved by an analytical description of phase velocities for fast (P_f) and slow (P_s) longitudinal modes, transverse mode (S) as well as the extensional mode due to the cylindrical geometry of the sample. The purpose of this paper is to provide elements to measure correctly co seismic seismomagnetic fields and to specify their amplitude. The seismic arrivals recorded in the sample showing a 1200$-1300 m/s velocity have been associated to P and extensional waves. The measured seismo-magnetic arrivals show a velocity of about 800 m/s consistent with the calculated phase velocity of S waves. Therefore we show that the seismo-magnetic field is associated to the transverse part of the propagation, as theoretically predicted by Pride (1994), but never measured up to now. Moreover, the combined experimental and analytical approaches lead us to the conclusion that the measured seismo-magnetic field is probably about 0.35 nT for a 1 m/s2 seismic source acceleration (0.1 g)

    Self-Potential and electromagnetic monitoring during fluid injection into magmatic rocks

    Get PDF

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho

    Numerical and Analytical Methods in Electromagnetics

    Get PDF
    Like all branches of physics and engineering, electromagnetics relies on mathematical methods for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering, imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce any useful results. In the 1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of the fields for very high frequencies when closed-form solutions were not feasible. Later, when computers demonstrated explosive progress, numerical techniques were utilized to develop approximate results of controllable accuracy for arbitrary geometries. In this Special Issue, the most recent advances in the aforementioned approaches are presented to illustrate the state-of-the-art mathematical techniques in electromagnetics
    corecore