358 research outputs found

    KALwEN: A New Practical and Interoperable Key Management Scheme for Body Sensor Networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks(BSNs) pose several challenges -- some inherited from wireless sensor networks(WSNs), some unique to themselves -- that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new lightweight scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports global broadcast, local broadcast and neighbor-to-neighbor unicast, while preserving past key secrecry and future key secrecy. The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case

    Group Key Managements in Wireless Sensor Networks

    Get PDF

    Detecting and Mitigating Denial-of-Service Attacks on Voice over IP Networks

    Get PDF
    Voice over IP (VoIP) is more susceptible to Denial of Service attacks than traditional data traffic, due to the former's low tolerance to delay and jitter. We describe the design of our VoIP Vulnerability Assessment Tool (VVAT) with which we demonstrate vulnerabilities to DoS attacks inherent in many of the popular VoIP applications available today. In our threat model we assume an adversary who is not a network administrator, nor has direct control of the channel and key VoIP elements. His aim is to degrade his victim's QoS without giving away his presence by making his attack look like a normal network degradation. Even black-boxed, applications like Skype that use proprietary protocols show poor performance under specially crafted DoS attacks to its media stream. Finally we show how securing Skype relays not only preserves many of its useful features such as seamless traversal of firewalls but also protects its users from DoS attacks such as recording of conversations and disruption of voice quality. We also present our experiences using virtualization to protect VoIP applications from 'insider attacks'. Our contribution is two fold we: 1) Outline a threat model for VoIP, incorporating our attack models in an open-source network simulator/emulator allowing VoIP vendors to check their software for vulnerabilities in a controlled environment before releasing it. 2) We present two promising approaches for protecting the confidentiality, availability and authentication of VoIP Services

    Secrecy on the Physical Layer in Wireless Networks

    Get PDF

    Security in Mobile Networks: Communication and Localization

    Get PDF
    Nowadays the mobile networks are everywhere. The world is becoming more dependent on wireless and mobile services, but the rapid growth of these technologies usually underestimates security aspects. As wireless and mobile services grow, weaknesses in network infrastructures become clearer. One of the problems is privacy. Wireless technologies can reduce costs, increase efficiencies, and make important information more readily and widely available. But, there are also risks. Without appropriate safeguards, these data can be read and modified by unauthorized users. There are many solutions, less and more effective, to protect the data from unauthorized users. But, a specific application could distinguish more data flows between authorized users. Protect the privacy of these information between subsets of users is not a trivial problem. Another problem is the reliability of the wireless service. Multi-vehicle systems composed of Autonomous Guided Vehicles (AGVs) are largely used for industrial transportation in manufacturing and logistics systems. These vehicles use a mobile wireless network to exchange information in order to coordinate their tasks and movements. The reliable dissemination of these information is a crucial operation, because the AGVs may achieve an inconsistent view of the system leading to the failure of the coordination task. This has clear safety implications. Going more in deep, even if the communication are confidential and reliable, anyway the positioning information could be corrupted. Usually, vehicles get the positioning information through a secondary wireless network system such as GPS. Nevertheless, the widespread civil GPS is extremely fragile in adversarial scenarios. An insecure distance or position estimation could produce security problems such as unauthorized accesses, denial of service, thefts, integrity disruption with possible safety implications and intentional disasters. In this dissertation, we face these three problems, proposing an original solution for each one
    corecore