282 research outputs found

    Friction and wear monitoring methods for journal bearings of geared turbofans based on acoustic emission signals and machine learning

    Get PDF
    In this work, effective methods for monitoring friction and wear of journal bearings integrated in future UltraFanÂź jet engines containing a gearbox are presented. These methods are based on machine learning algorithms applied to Acoustic Emission (AE) signals. The three friction states: dry (boundary), mixed, and fluid friction of journal bearings are classified by pre-processing the AE signals with windowing and high-pass filtering, extracting separation effective features from time, frequency, and time-frequency domain using continuous wavelet transform (CWT) and a Support Vector Machine (SVM) as the classifier. Furthermore, it is shown that journal bearing friction classification is not only possible under variable rotational speed and load, but also under different oil viscosities generated by varying oil inlet temperatures. A method used to identify the location of occurring mixed friction events over the journal bearing circumference is shown in this paper. The time-based AE signal is fused with the phase shift information of an incremental encoder to achieve an AE signal based on the angle domain. The possibility of monitoring the run-in wear of journal bearings is investigated by using the extracted separation effective AE features. Validation was done by tactile roughness measurements of the surface. There is an obvious AE feature change visible with increasing run-in wear. Furthermore, these investigations show also the opportunity to determine the friction intensity. Long-term wear investigations were done by carrying out long-term wear tests under constant rotational speeds, loads, and oil inlet temperatures. Roughness and roundness measurements were done in order to calculate the wear volume for validation. The integrated AE Root Mean Square (RMS) shows a good correlation with the journal bearing wear volume

    THE INVESTIGATION INTO THE CONDITION MONITORING OF TRIBOLOGICAL BEHAVIOUR BETWEEN PISTON RING AND CYLINDER LINER USING ACOUSTIC EMISSIONS

    Get PDF
    To improve engine operational performance and reliability, this study focuses on the investigation into the behaviour of tribological conjunction between the ring - liner based on a comprehensive analysis of non-intrusive acoustic emission (AE) measurement. Particularly, the study will provide more knowledge of using AE for online monitoring and diagnosing the performances of the conjunction. To fulfil this study, it integrates analytical predictions of the theoretical modelling for the AE generation mechanism with extensive experimental evaluations. Moreover, effective signal processing techniques are implemented with a combination of the model based AE predictions to extract the weak and nonstationary AE contents that correlate more with the tribological behaviour. Based on conventional tribological models, tribological AE is modelled to be due to two main dynamic effects: asperity-asperity collision (AAC) and fluid-asperity interaction (FAI), which allows measured AE signals from the tribological conjunction to be explained under different scenarios, especially under abnormal behaviours. FAI induced AE is more correlated with lubricants and velocity. It presents mainly in the middle of engine strokes but is much weaker and severely interfered with AEs from not only valve landings, combustion and fuel injection shocks but also the effect of considerable AACs due to direct contacts and solid particles in oils. To extract weak AEs for accurately diagnosing the tribological behaviours, wavelet transform analysis is applied to AE signals with three novel schemes: 1) hard threshold based wavelet coefficients selection in which the threshold value and wavelet analysis parameters are determined using a modified velocity of piston motion which has high dependence on the AE characteristics predicted by the two models; 2) Adaptive threshold wavelet coefficients selection in which the threshold is gradually updated to minimise the distance between the AE envelopes and the predicted dependence; and 3) wavelet packet transform (WPT) analysis is carried out by an optimised Daubechies wavelet through a novel approach based on minimising the time and frequency overlaps in WPT spectrum. Based on these optimal analyses, the local envelope amplitude (LEA) and the average residual wavelet coefficient (ARWC) are developed from AE signals as novel indicators to reflect the tribological behaviours.\ud Both the hard threshold based LEA and wavelet packet transform LEA values allow two different new lubricants to be diagnosed in accordance with model predictions whereas they produce less consistent results in differentiating the used oil under several operating conditions. Nevertheless, ARWC can separate the used oil successfully in that it can highlight the AAC effects of particle collisions in used oils. Similarly, LEA shows little impacts of two alternative fuels on the tribological behaviours. However, ARWC shows significantly higher amplitudes in several operating conditions when more particles can be produced due to unstable and incomplete combustions of both the biodiesel and FT diesel, compared with pure diesel, indicating they can cause light wear

    Condition Monitoring of Helical Gear Transmissions Based on Vibration Modelling and Signal Processing

    Get PDF
    Condition monitoring (CM) of gear transmission has attracted extensive research in recent years. In particular, the detection and diagnosis of its faults in their early stages to minimise cost by maximising time available for planned maintenance and giving greater opportunity for avoiding a system breakdown. However, the diagnostic results obtained from monitored signals are often unsatisfactory because mainstream technologies using vibration response do not sufficiently account for the effect of friction and lubrication. To develop a more advanced and accurate diagnosis, this research has focused on investigating the nonlinearities of vibration generation and transmission with the viscoelastic properties of lubrication, to provide an in-depth understanding of vibration generating mechanisms and hence develop more effective signal processing methods for early detection and accurate diagnosis of gear incipient faults. A comprehensive dynamic model has been developed to study the dynamic responses of a multistage helical gear transmission system. It includes not only time-varying stiffness but also tooth friction forces based on an elastohydrodynamic lubrication (EHL) model. In addition, the progression of a light wear process is modelled by reducing stiffness function profile, in which the 2nd and 3rd harmonics of the meshing frequency (and their sidebands) show significant alteration that support fault diagnostic at early stages. Numerical and experimental results show that the friction and progressive wear induced vibration excitations will change slightly the amplitudes of the spectral peaks at both the mesh frequency and its sideband components at different orders, which provides theoretical supports for extracting reliable diagnostic signatures. As such changes in vibrations are extremely small and submerged in noise, it is clear that effective techniques for enhancing the signal-to-noise ratio, such as time synchronous averaging (TSA) and modulation signal bispectrum (MSB) are required to reveal such changes. MSB is preferred as it allows small amplitude sidebands to be accurately characterised in a nonlinear way without information loss and does not impose any addition demands regarding angular displacement measurement as does TSA. With the successful diagnosis of slight wear in helical gears, the research progressed to validate the capability of MSB based methods to diagnose four common gear faults relating to gear tribological conditions; lubrication shortfall, changes in lubrication viscosity, water in oil, and increased bearing clearances. The results show that MSB signatures allows accurate differentiation between these small changes, confirming the model and signal processing proposed in this thesi

    Viscosity Measurements Using a Multiple Frequency Matching Layer Viscometer

    Get PDF
    Lubricating oil is used to separate two surfaces in relative motion. To adequately reduce wear and maintain optimum efficiency, it is vital to know the viscosity of the lubricating oil. Most lubricating oils are non-Newtonian, meaning the viscosity is dependent on the shear rate. This thesis develops a tool to carry out viscosity measurements of lubricating oils at varying high shear rates in-situ. To fully understand how the lubricant will react in-situ it is necessary to subject the oil to the harsh conditions found in an engine. However, this is very challenging to replicate. If viscosity measurements are completed in-situ, it negates the need to replicate the harsh conditions. Due to the many advantages of ultrasound, including low cost, ability to complete measurements in harsh conditions and continuous measurements, the ultrasound method is the most promising technique to complete high shear in-situ measurements. The shear reflection method obtains the viscosity of the lubricating oil by measuring the returned amplitude of an emitted shear ultrasound wave. When the emitted wave reaches a boundary, a proportion of the wave will be reflected, and a proportion will be transmitted. The proportion reflected is dependent upon the acoustic impedance of the media on either side of the boundary. For lubricating oil, its acoustic impedance is related to its viscosity. The ultrasonic shear reflection viscometer had to be adapted to measure the viscosity of lubricating oils because the majority of the signal was reflected as the difference in the acoustic impedance of the piezoelectric crystal and oil was too great. This made it impossible to determine the viscosity of lubricating oils. By installing an intermediary layer, known as the matching layer, between the piezoelectric crystal and the lubricating oil, a greater proportion of the signal was transmitted, and the reflection coefficient could be used to determine the viscosity of lubricating oils. This thesis focuses on understanding the shear rate exerted on the test oil by the ultrasonic shear reflection viscometer, as without this information the viscometer is unable to be used to measure the viscosity of non-Newtonian fluids, such as engine oils. In this study, a mathematical model was developed to determine the viscosity of Newtonian and non-Newtonian fluids from the pressure reflection coefficient for a three-layered system. The model illustrated the advantages of the three-layered system, and a sensitivity analysis was completed to understand the relationship between frequency and reflection coefficient. This model was validated by measuring the viscosity of Newtonian fluids with a viscosity range of 16 − 710cP, using an ultrasound viscometer over the frequencies 1 − 10MHz and comparing with viscosity results from a low shear Couette viscometer. This multiple-frequency matching layer viscometer was instrumented with different frequency transducers and different thickness matching layers to obtain maximum sensitivity. Using the multiple frequency matching layer viscometer different input signal settings were altered to find the optimal settings. A further model was then developed from Stokes’ second problem, which is used to describe the flow from an oscillating surface, to understand the shear rate exerted on the lubricating oil from the ultrasound matching layer viscometer. Previous researchers have successfully used the Cox-Merz rule for simple fluids at low shear rates which states that the shear rate for a steady and oscillatory shear can be related by, η( ˙ Îł) = η(ω), where η is the dynamic viscosity, γ˙ is the shear rate, and ω is the angular velocity. This thesis argues that for high shear rate measurements, the shear rate from the ultrasonic shear reflection viscometer is dependent on the viscosity and velocity of the fluid and the frequency of the shear wave. To determine the shear rate exerted on the lubricating oil using the derivation from Stokes’ second problem, the velocity of the lubricating oil was required. Due to the non-reflective nature of lubricating oil, it was indirectly measured using a laser vibrometer and was found to be dependant on the excitation voltage. Viscosity measurements of non-Newtonian lubricants were completed on the multiple frequency matching layer viscometer and compared with results obtained on an ultra-shear Couette viscometer. The results were more similar using Stokes’ second problem than Cox-Merz, which validated the shear rate model. Finally using this model, a shear rate viscosity plot was created for Newtonian and non-Newtonian oils

    SIRM 2017

    Get PDF
    This volume contains selected papers presented at the 12th International Conference on vibrations in rotating machines, SIRM, which took place February 15-17, 2017 at the campus of the Graz University of Technology. By all meaningful measures, SIRM was a great success, attracting about 120 participants (ranging from senior colleagues to graduate students) from 14 countries. Latest trends in theoretical research, development, design and machine maintenance have been discussed between machine manufacturers, machine operators and scientific representatives in the field of rotor dynamics. SIRM 2017 included thematic sessions on the following topics: Rotordynamics, Stability, Friction, Monitoring, Electrical Machines, Torsional Vibrations, Blade Vibrations, Balancing, Parametric Excitation, and Bearings. The papers struck an admirable balance between theory, analysis, computation and experiment, thus contributing a richly diverse set of perspectives and methods to the audience of the conference

    Integrated investigation of piston–cylinder impact-induced noise and passive control of the piston’s secondary motion using nonlinear absorbers

    Get PDF
    Although alternative power sources are getting well-established, transportation will remain primarily dependent on IC engines using fossil fuels for at least a few more decades. The IC engines typically employ reciprocating pistons to convert the combustion pressure into mechanical work required by the vehicle. Engine NVH issues make their appearance at the piston-cylinder interface in the form of impulsive vibration signals. The piezo-viscous nature of the lubricant at the piston-cylinder conjunction can change the dynamic response of the impacting structures. Much of the published research to date has excluded the elasto-hydrodynamic effects of the lubricant on piston impact noise. Even when these effects were studied, the research focus has been primarily on the tribology of the contact. Thus, an accurate methodology is required to identify and predict piston impact noise using real in-cylinder conditions, especially at the lubricated piston-cylinder conjunction. [Continues.

    Hydrodynamics

    Get PDF
    The phenomena related to the flow of fluids are generally complex, and difficult to quantify. New approaches - considering points of view still not explored - may introduce useful tools in the study of Hydrodynamics and the related transport phenomena. The details of the flows and the properties of the fluids must be considered on a very small scale perspective. Consequently, new concepts and tools are generated to better describe the fluids and their properties. This volume presents conclusions about advanced topics of calculated and observed flows. It contains eighteen chapters, organized in five sections: 1) Mathematical Models in Fluid Mechanics, 2) Biological Applications and Biohydrodynamics, 3) Detailed Experimental Analyses of Fluids and Flows, 4) Radiation-, Electro-, Magnetohydrodynamics, and Magnetorheology, 5) Special Topics on Simulations and Experimental Data. These chapters present new points of view about methods and tools used in Hydrodynamics

    Smart Flow Control Processes in Micro Scale

    Get PDF
    In recent years, microfluidic devices with a large surface-to-volume ratio have witnessed rapid development, allowing them to be successfully utilized in many engineering applications. A smart control process has been proposed for many years, while many new innovations and enabling technologies have been developed for smart flow control, especially concerning “smart flow control” at the microscale. This Special Issue aims to highlight the current research trends related to this topic, presenting a collection of 33 papers from leading scholars in this field. Among these include studies and demonstrations of flow characteristics in pumps or valves as well as dynamic performance in roiling mill systems or jet systems to the optimal design of special components in smart control systems

    Study of film formation in EHD contacts using a novel method based on electrical capacitance

    Get PDF
    The elastohydrodynamic lubrication regime (EHD) is found in many machine elements, such as rolling element bearings, gears, cam/tappet, where a combination of hydrodynamic effect, elastic deformation of the surfaces and an increase of the lubricant’s viscosity with pressure create a continuous lubricant film which is capable of supporting pressures of the order of tens of thousands of atmospheres. One of the most important features of these films is their thickness, as this determines whether the bounding surfaces are completely separated, thus avoiding premature wear and failure of the contact. Consequently for many years scientists were interested in finding methods for measuring the lubricant film thickness in elastohydrodynamic conditions. One of the most versatile and widely used techniques for measuring lubricant film thickness in EHD contacts is the optical interferometry method. Apart from numerous advantages, this method has the limitation in the fact that one of the contacting surfaces must be transparent, usually glass or sapphire, thus it does not replicate real conditions found in machine elements contacts. On the other hand, the other group of methods used for studying the behaviour of elastohydrodynamic films includes a variety of electrical methods. Historically, these appeared before the optical methods, but gradually lost importance with the success of the later. Most capacitive, resistive, inductance methods developed so far use specially designed sensors for monitoring the lubricant film thickness. In the case of electrical techniques, both elements of the contact are metallic, which means that these can be used for measuring film thickness in real machine elements. One of the main disadvantages of electrical methods though, is the difficulty with which the calibration of various electrical quantities, against lubricant film thickness is obtained. This thesis describes the work carried out by the author on the application of a capacitive method for studying lubrication of elastohydrodynamic contacts. The novelty of the method used consists in the calibration of the capacitance of the contact with optical interferometry. This project started from the premises that a thicker Chromium layer will supply the phase change needed to precisely measure the lubricant film thickness by eliminating the fragile silica layer, and it has been shown that an increase in Cr thickness results in a increase in reflection of the glass–Cr interface making the resulting images hard to process. Modifications to the existing experimental rig were carried out in order to apply/collect an electrical signal from both the disc and the ball. Signal collection from the disc was quite straightforward and a graphite brush paired with a copper nut was used, as this is the oldest method of collecting/applying and electrical signal from a rotating element. Collecting an electrical signal from the ball presented quite a challenge as the ball is submerged in oil. A number of brushes was designed, made and tested and the one that provided the most stable results chosen. For calibration purposes a base oil and two additives were chosen, the additives were chosen in such a way that the improvement made to the lubrication process to be very different from one additive to the other. The chosen additives were a Viscosity Index Improver [VII] and an Organic Friction Modifier [OFM]. The VII is used by many researchers in order to obtain multigrade lubricants using the same base oil by varying its percentage in the mix. The OFM is used to provide protection between the two contacting bodies when EHD film fails and EHD lubrication is replaced by mixed lubrication by forming a boundary layer on the contacting surfaces. Optical measurements were carried out on the base oil and the two resulting lubricants from the additive mixes using the Ultra Thin Film Interferometry [UTFI] method. The measurements were used as a benchmark against which the capacitive measurements were calibrated. Tests were conducted in a number of controlled conditions for speed, temperature, load and sliding conditions. Results showed that the highest influence on the lubrication process was given by the speed, an increase in speed results in an increase in optically measured film thickness and a decrease in electrically measured film thickness. Phenomenon explained by a large amount of lubricant pushed into the contact. Another parameter that influenced the results quite significantly was temperature, a rise in temperature supplies a decrease in optically measured film thickness and an increase in capacitive measured film thickness which was explained by lubricant viscosity dropping with a rise in temperature. Three different sliding conditions were employed and a small drop in optically measured film thickness followed by a small rise in electrically measured film thickness was recorded due to a local increase in contact temperature when sliding was employed. The capacitive method developed in this project is precise enough to accurately measure lubricant film thickness down to 100nm; a model for thicknesses lower that 100nm was proposed Results from the optical and capacitive methods were compared and a good correlation was found, indicating that the developed capacitive method can be used as a tool for measuring metal on metal contacts without further calibration.EThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo
    • 

    corecore