76 research outputs found

    The use of wearable/portable digital sensors in Huntington’s disease: a systematic review

    Get PDF
    In chronic neurological conditions, wearable/portable devices have potential as innovative tools to detect subtle early disease manifestations and disease fluctuations for the purpose of clinical diagnosis, care and therapeutic development. Huntington’s disease (HD) has a unique combination of motor and non-motor features which, combined with recent and anticipated therapeutic progress, gives great potential for such devices to prove useful. The present work aims to provide a comprehensive account of the use of wearable/portable devices in HD and of what they have contributed so far. We conducted a systematic review searching MEDLINE, Embase, and IEEE Xplore. Thirty references were identified. Our results revealed large variability in the types of sensors used, study design, and the measured outcomes. Digital technologies show considerable promise for therapeutic research and clinical management of HD. However, more studies with standardized devices and harmonized protocols are needed to optimize the potential applicability of wearable/portable devices in HD

    Characterization and personalization of botulinum toxin type A therapy for upper limb tremor in Parkinson disease and Essential tremor patients using multi-sensor kinematic technology

    Get PDF
    Tremor commonly affects the upper extremities in essential tremor (ET) and Parkinson disease (PD) patients where many experience functional disability and ultimately seek therapy. As ET and PD tremor features overlap and clinical assessment is challenging due to its highly complex nature, misdiagnosis is common resulting in unsuitable therapies and prognosis. Current treatment options for ET and PD tremor include pharmacotherapy, focal therapy with botulinum toxin type A (BoNT-A) injections, and surgical interventions which provide modest relief of tremor. However, such therapies are commonly associated with significant adverse events and lack long-term efficacy and tolerability. Hence lack of standardized, objective measures of tremor and suboptimal treatment options are two significant unmet needs faced by neurologists today. The hypothesis of this thesis was to determine whether joint tremor amplitude can differentiate between ET and PD tremor types and can be applied towards improving BoNT-A tremor therapy. The first objective was to apply motion sensor kinematic technology to investigate the role of paired tasks in modulating tremor biomechanics in 24 ET and 28 PD participants. Paired tasks involved variating limb positioning while at rest, posture, and under weight-bearing conditions. Motion sensor devices were placed over the wrist, elbow and shoulder joints capturing joint angular tremor amplitude in multiple degrees of freedom (DOF). Kinematic measures of tremor allowed detailed segmentation of tremor into directional components, which cannot be performed visually. The relationship of joint tremor severity between paired tasks and across all tasks generated unique tremor profiles and provided a simple method to differentiate ET and PD tremor types. The second objective was to apply tremor kinematics to better tailor BoNT-A injection parameters. Participants were injected in the upper limb, which exhibited their most bothersome tremor, every 16 weeks, a total of 3 injection cycles, and attended follow-up visits six weeks following treatment, for a total of 6 study visits. Clinical rating scales and kinematic recordings were conducted at each visit. Dosing was based on clinician’s experience and kinematic data, and muscle site of injection was determined kinematically. A significant decrease in mean clinical tremor rating scores during rest and action tasks and significant improvement in arm function was observed at week 6 and continued throughout the study in both ET and PD individuals. Ten PD participants and eight ET participants reported mild weakness in injected muscles that had no interference with arm function. Kinematic technology is a promising method for standardizing assessments and for personalizing BoNT-A therapy

    Exploration of digital biomarkers in chronic low back pain and Parkinson’s disease

    Get PDF
    Chronic pain and Parkinson’s disease are illnesses with personal disease progression, symptoms, and the experience of these. The ability to measure and monitor the symptoms by digitally and remotely is still limited. The aim was to study the usability and feasibility of real-world data from wearables, mobile devices, and patients in exploring digital biomarkers in these diseases. The key hypothesis was that this allows us to measure, analyse and detect clinically valid digital signals in movement, heart rate and skin conductance data. The laboratory grade data in chronic pain were collected in an open feasibility study by using a program and built-in sensors in virtual reality devices. The real-world data were collected with a randomized clinical study by clinical assessments, built-in sensors, and two wearables. The laboratory grade dataset in Parkinson’s disease was obtained from Michael J. Fox Foundation. It contained sensor data from three wearables with clinical assessments. The real-world data were collected with a clinical study by clinical assessments, a wearable, and a mobile application. With both diseases the laboratory grade data were first explored, before the real-world data were analyzed. The classification of chronic pain patients with the laboratory grade movement data was possible with a high accuracy. A novel real-world digital signal that correlates with clinical outcomes was found in chronic low back pain patients. A model that was able to detect different movement states was developed with laboratory grade Parkinson’s disease data. A detection of these states followed by the quantification of symptoms was found to be a potential method for the future. The usability of data collection methods in both diseases were found promising. In the future the analyses of movement data in these diseases could be further researched and validated as a movement based digital biomarkers to be used as a surrogate or additional endpoint. Combining the data science with the optimal usability enables the exploitation of digital biomarkers in clinical trials and treatment.Digitaalisten biomarkkereiden tunnistaminen kroonisessä alaselkäkivussa ja Parkinsonin taudissa Krooninen kipu ja Parkinsonin tauti ovat oireiden, oirekokemuksen sekä taudin kehittymisen osalta yksilöllisiä sairauksia. Kyky mitata ja seurata oireita etänä on vielä alkeellista. Väitöskirjassa tutkittiin kaupallisten mobiili- ja älylaitteiden hyödyntämistä digitaalisten biomarkkereiden löytämisessä näissä taudeissa. Pääolettamus oli, että kaupallisten älylaitteiden avulla kyetään tunnistamaan kliinisesti hyödyllisiä digitaalisia signaaleja. Kroonisen kivun laboratorio-tasoinen data kerättiin tätä varten kehitettyä ohjelmistoa sekä kaupallisia antureita käyttäen. Reaaliaikainen kipudata kerättiin erillisen hoito-ohjelmiston tehoa ja turvallisuutta mitanneessa kliinisessä tutkimuksessa sekä kliinisiä arviointeja että anturidataa hyödyntäen. Laboratorio-tasoinena datana Parkinsonin taudissa käytettiin Michael J. Fox Foundationin kolmella eri älylaitteella ja kliinisin arvioinnein kerättyä dataa. Reaaliaikainen data kerättiin käyttäen kliinisia arviointeja, älyranneketta ja mobiilisovellusta. Molempien indikaatioiden kohdalla laboratoriodatalle tehtyä eksploratiivista analyysia hyödynnettiin itse reaaliaikaisen datan analysoinnissa. Kipupotilaiden tunnistaminen laboratorio-tasoisesta liikedatasta oli mahdollista korkealla tarkkuudella. Reaaliaikaisesta liikedatasta löytyi uusi kliinisten arviointien kanssa korreloiva digitaalinen signaali. Parkinsonin taudin datasta kehitettiin uusi liiketyyppien tunnistamiseen tarkoitettu koneoppimis-malli. Sen hyödyntäminen liikedatan liiketyyppien tunnistamisessa ennen varsinaista oireiden mittausta on lupaava menetelmä. Käytettävyys molempien tautien reaaliaikaisissa mittausmenetelmissä havaittiin toimivaksi. Reaaliaikaiseen, kaupallisin laittein kerättävään liikedataan pohjautuvat digitaaliset biomarkkerit ovat lupaava kohde jatkotutkimukselle. Uusien analyysimenetelmien yhdistäminen optimaaliseen käytettävyyteen mahdollistaa tulevaisuudessa digitaalisten biomarkkereiden hyödyntämisen sekä kroonisten tautien kliinisessä tutkimuksessa että itse hoidossa

    PD_manager: an mHealth platform for Parkinson's disease Management

    Get PDF
    Parkinson’s disease (PD) current clinical management is mostly based on patient’s subjective report about the effects of treatments and on medical examinations that unfortunately represent only a snapshot of a highly fluctuating clinical condition. This traditional approach requires time, it is biased by patient’s judgment and is often not completely reliable, especially in moderate advanced stages. The main purpose of the EU funded project PD_manager (Horizon 2020, Grant Agreement n° 643706) is to build and evaluate an innovative, mHealth, patient-centric system for PD remote monitoring. After a first phase of research and development, a set of wearable devices has been selected and tested on 20 patients. The raw data recorded have been used to feed algorithms necessary to recognize motor symptoms. In parallel, other applications have been developed to test also the main non-motor symptoms. On a second phase, a case- control randomized multicentric study has been designed and performed to assess the acceptability and utility of the PD_manager system at patients’ home, compared to the current gold standard for home monitoring, represented by symptoms diaries. 136 couples of patients and caregivers have been recruited, and at the end of the trial the system was found to be very well tolerated and easy to use, compared to diaries. The developed System is able to recognize motor and non-motor symptoms, helping healthcare professionals in taking decisions on therapeutic strategies. Moreover, PD_manager could represent a useful tool for patient's self-monitoring and self-care promotion

    Inertial sensor based full body 3D kinematics in the differential diagnosis between Parkinson’s Disease and mimics

    Get PDF
    The differential diagnosis of Parkinson’s Disease (PD) remains challenging with frequent mis and underdiagnosis. DAT-Scan has been a useful technique for assessing the lost integrity of the nigrostriatal pathway in PD and differentiating true parkinsonism from mimics. However, DAT-Scan remains unavailable in most non-specialized clinical centres, making imperative the search for other easy and low-cost solutions. This dissertation aimed to investigate the role of inertial sensors in distinguishing between the denervated and the non-denervated individuals. In this dissertation, we've used Inertial Sensor Based 3D Full Body Kinematics (FBK) and tested if this technique was able to distinguish between patients with changes in the DAT-Scan from those without. This was divided into two parts, being that firstly, a group of individuals was referred by the attending physician for DAT-Scan (123I-FP-CIT SPECT) to be able to compare FBK in those with and without evidence of dopaminergic depletion. Second, it was tested whether FBK could be used as a metric for the severity of dopaminergic depletion. Twenty-one patients participated in this study, being recruited from the Nuclear Medicine Unit in the Champalimaud Clinical Centre (CCC), Lisbon. Within these 21 patients, 10 of them had denervation (mean age, 68.4 ± 7.8 years) and the remaining 11 (mean age, 66.6 ± 7.4 years) did not present denervation. The analysis between the worst uptake ratio features and dimensional features, as well as the asymmetry indexes in the striatum revealed significant differences between denervated and non-denervated individuals. On the contrary, the kinematics did not do it. Overall, based on the collected kinematics data, it was identified that there was not any significant correlation between the kinematics and the DAT-Scan. What means that these kinematics variables were not able to explain the DAT-Scan. On the other hand, it was also checked that the kinematics data were strongly correlated to the motor symptoms (MDS-UPDRS III). This way, it was concluded that the classical biomechanics did not distinguish denervated from non-denervated individuals. Therefore, the kinematics could not give the same answer as the DAT-Scan. In spite of these results it would be relevant to keep researching other methods in order to find out the distinction between the denervation and no denervation in a low-cost way

    Clinical Decision Support Systems with Game-based Environments, Monitoring Symptoms of Parkinson’s Disease with Exergames

    Get PDF
    Parkinson’s Disease (PD) is a malady caused by progressive neuronal degeneration, deriving in several physical and cognitive symptoms that worsen with time. Like many other chronic diseases, it requires constant monitoring to perform medication and therapeutic adjustments. This is due to the significant variability in PD symptomatology and progress between patients. At the moment, this monitoring requires substantial participation from caregivers and numerous clinic visits. Personal diaries and questionnaires are used as data sources for medication and therapeutic adjustments. The subjectivity in these data sources leads to suboptimal clinical decisions. Therefore, more objective data sources are required to better monitor the progress of individual PD patients. A potential contribution towards more objective monitoring of PD is clinical decision support systems. These systems employ sensors and classification techniques to provide caregivers with objective information for their decision-making. This leads to more objective assessments of patient improvement or deterioration, resulting in better adjusted medication and therapeutic plans. Hereby, the need to encourage patients to actively and regularly provide data for remote monitoring remains a significant challenge. To address this challenge, the goal of this thesis is to combine clinical decision support systems with game-based environments. More specifically, serious games in the form of exergames, active video games that involve physical exercise, shall be used to deliver objective data for PD monitoring and therapy. Exergames increase engagement while combining physical and cognitive tasks. This combination, known as dual-tasking, has been proven to improve rehabilitation outcomes in PD: recent randomized clinical trials on exergame-based rehabilitation in PD show improvements in clinical outcomes that are equal or superior to those of traditional rehabilitation. In this thesis, we present an exergame-based clinical decision support system model to monitor symptoms of PD. This model provides both objective information on PD symptoms and an engaging environment for the patients. The model is elaborated, prototypically implemented and validated in the context of two of the most prominent symptoms of PD: (1) balance and gait, as well as (2) hand tremor and slowness of movement (bradykinesia). While balance and gait affections increase the risk of falling, hand tremors and bradykinesia affect hand dexterity. We employ Wii Balance Boards and Leap Motion sensors, and digitalize aspects of current clinical standards used to assess PD symptoms. In addition, we present two dual-tasking exergames: PDDanceCity for balance and gait, and PDPuzzleTable for tremor and bradykinesia. We evaluate the capability of our system for assessing the risk of falling and the severity of tremor in comparison with clinical standards. We also explore the statistical significance and effect size of the data we collect from PD patients and healthy controls. We demonstrate that the presented approach can predict an increased risk of falling and estimate tremor severity. Also, the target population shows a good acceptance of PDDanceCity and PDPuzzleTable. In summary, our results indicate a clear feasibility to implement this system for PD. Nevertheless, long-term randomized clinical trials are required to evaluate the potential of PDDanceCity and PDPuzzleTable for physical and cognitive rehabilitation effects

    A wearable biofeedback device to improve motor symptoms in Parkinson’s disease

    Get PDF
    Dissertação de mestrado em Engenharia BiomédicaThis dissertation presents the work done during the fifth year of the course Integrated Master’s in Biomedical Engineering, in Medical Electronics. This work was carried out in the Biomedical & Bioinspired Robotic Devices Lab (BiRD Lab) at the MicroElectroMechanics Center (CMEMS) established at the University of Minho. For validation purposes and data acquisition, it was developed a collaboration with the Clinical Academic Center (2CA), located at Braga Hospital. The knowledge acquired in the development of this master thesis is linked to the motor rehabilitation and assistance of abnormal gait caused by a neurological disease. Indeed, this dissertation has two main goals: (1) validate a wearable biofeedback system (WBS) used for Parkinson's disease patients (PD); and (2) develop a digital biomarker of PD based on kinematic-driven data acquired with the WBS. The first goal aims to study the effects of vibrotactile biofeedback to play an augmentative role to help PD patients mitigate gait-associated impairments, while the second goal seeks to bring a step advance in the use of front-end algorithms to develop a biomarker of PD based on inertial data acquired with wearable devices. Indeed, a WBS is intended to provide motor rehabilitation & assistance, but also to be used as a clinical decision support tool for the classification of the motor disability level. This system provides vibrotactile feedback to PD patients, so that they can integrate it into their normal physiological gait system, allowing them to overcome their gait difficulties related to the level/degree of the disease. The system is based on a user- centered design, considering the end-user driven, multitasking and less cognitive effort concepts. This manuscript presents all steps taken along this dissertation regarding: the literature review and respective critical analysis; implemented tech-based procedures; validation outcomes complemented with results discussion; and main conclusions and future challenges.Esta dissertação apresenta o trabalho realizado durante o quinto ano do curso Mestrado Integrado em Engenharia Biomédica, em Eletrónica Médica. Este trabalho foi realizado no Biomedical & Bioinspired Robotic Devices Lab (BiRD Lab) no MicroElectroMechanics Center (CMEMS) estabelecido na Universidade do Minho. Para efeitos de validação e aquisição de dados, foi desenvolvida uma colaboração com Clinical Academic Center (2CA), localizado no Hospital de Braga. Os conhecimentos adquiridos no desenvolvimento desta tese de mestrado estão ligados à reabilitação motora e assistência de marcha anormal causada por uma doença neurológica. De facto, esta dissertação tem dois objetivos principais: (1) validar um sistema de biofeedback vestível (WBS) utilizado por doentes com doença de Parkinson (DP); e (2) desenvolver um biomarcador digital de PD baseado em dados cinemáticos adquiridos com o WBS. O primeiro objetivo visa o estudo dos efeitos do biofeedback vibrotáctil para desempenhar um papel de reforço para ajudar os pacientes com PD a mitigar as deficiências associadas à marcha, enquanto o segundo objetivo procura trazer um avanço na utilização de algoritmos front-end para biomarcar PD baseado em dados inerciais adquiridos com o dispositivos vestível. De facto, a partir de um WBS pretende-se fornecer reabilitação motora e assistência, mas também utilizá-lo como ferramenta de apoio à decisão clínica para a classificação do nível de deficiência motora. Este sistema fornece feedback vibrotáctil aos pacientes com PD, para que possam integrá-lo no seu sistema de marcha fisiológica normal, permitindo-lhes ultrapassar as suas dificuldades de marcha relacionadas com o nível/grau da doença. O sistema baseia-se numa conceção centrada no utilizador, considerando o utilizador final, multitarefas e conceitos de esforço menos cognitivo. Portanto, este manuscrito apresenta todos os passos dados ao longo desta dissertação relativamente a: revisão da literatura e respetiva análise crítica; procedimentos de base tecnológica implementados; resultados de validação complementados com discussão de resultados; e principais conclusões e desafios futuros

    Objective assessment of upper limb motor symptoms in Parkinson's Disease using body-worn sensors

    Get PDF
    MD ThesisBackground There is a need for an objective method of symptom assessment in Parkinson's disease (PD) to enable better treatment decisions and to aid evaluation of new treatments. Current assessment methods; patient-completed symptom diaries and clinical rating scales, have limitations. Accelerometers (sensors capable of capturing data on human movement) and analysis using artificial neural networks (ANNs) have shown potential as a method of motor symptom evaluation in PD. It is unknown whether symptom monitoring with body-worn sensors is acceptable to PD patients due to a lack of previous research. Methods 34 participants with PD wore bilateral wrist-worn accelerometers for 4 hours in a research facility (phase 1) and then for 7 days in their homes (phase 2) whilst also completing symptom diaries. An ANN designed to predict a patient’s motor status, was developed and trained based on accelerometer data during phase 2. ANN performance was evaluated (leave-one-out approach) against patient-completed symptom diaries during phase 2, and against clinician rating of disease state during phase 1 observations. Participants’ views regarding the sensors were obtained via a Likert-style questionnaire completed after each phase. Differences in responses between phases were assessed for using the Wilcoxon rank-sum test. Results ANN-derived values of the proportion of time in each disease state (phase 2), showed strong, significant correlations with values derived from patient-completed symptom diaries. ANN disease state recognition during phase 1 was sub-optimal. High concordance with sensors was seen. Prolonged wearing of the sensors did not adversely affect participants’ opinions on the wearability of the sensors, when compared to their responses following phase 1 Conclusions Accelerometers and ANNs produced results comparable to those of symptom diaries. Our findings suggest that long-term monitoring with wrist-worn sensors is acceptable to PD patients

    Functional mobility in Parkinson’s disease

    Get PDF
    Introduction: Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting 1% of the world population over the age of 60. The presence of a large and heterogeneous spectrum of motor and non-motor symptoms, some resistant to levodopa therapy, is usually a major source of disability that affects patients’ daily activities and social participation. Functional mobility (FM) is an outcome that merges the concepts of function with mobility, autonomy, and the accomplishment of daily tasks in different environments. Its use in PD studies is common. However, several aspects associated with its application in PD remain to be defined, hampering a wider use of the concept in clinical practice and the comparison of clinical study results. Aim: This thesis aimed to provide evidence on the appropriateness of the concept of FM in the PD field. A two-fold approach was used to this end: 1) To investigate the clinical and research applicability of the concept of FM in PD; 2) To identify the most suitable clinical and technological outcome measures for evaluating the response of PD patients’ FM to a therapeutic intervention. Methods: A narrative review using the framework of the International Classification of Functioning, Disability, and Health (ICF) was performed to explore the concept of FM when applied to PD. This first study aimed to provide a better understanding of the interaction between PD symptoms, FM, and patients’ daily activities and social participation. To identify and recommend the most suitable outcome measures to assess FM in PD, a systematic review was conducted using the CENTRAL, MEDLINE, Embase, and PEDro databases, from their inception to January 2019. During this review, we also explored the different definitions of FM present in the literature, proposing the one we believed should be established as the definition of FM in the PD field. We then conducted a focus group to explore PD patients' and health professionals’ perspectives on the proposed definition. Part of the scope of the focus group was also to investigate the impact of FM problems on patients’ daily living and the strategies used to deal with this. The study included four focus groups, two with patients (early and advanced disease stages), and two with health professionals (neurologists and physiotherapists). A second systematic review using the CENTRAL, MEDLINE, Embase, and PEDro databases, from their inception to September 2019, was performed to summarize and critically appraise the published evidence on PD spatiotemporal gait parameters. Finally, a pragmatic clinical study was conducted to identify the clinical and technological outcome measures that better predict changes in FM, when patients are submitted to a specialized multidisciplinary program for PD. Results: All the definitions found in an open search of the literature on the FM concept included three key aspects: gait, balance, and transfers. All participants in the focus group study were able to present a spontaneous definition of FM that matched the one used by the authors. All also agreed that FM reflects the difficulties of PD patients in daily life activities. Early-stage PD patients mentioned needing more time to complete their usual tasks, while advanced-stage PD patients considered FM limitations as the main limiting factor of daily activities, especially in medication “OFF” periods. Physiotherapists maintained that the management of PD FM limitations should be a joint work of the multidisciplinary team. For neurologists, FM may better express patients’ perception of their overall health status and may help to adopt a more patient-centered approach. Of the 95 studies included in the systematic review aiming to appraise the outcome measures that have been used to assess FM in PD patients, only one defined the concept of FM. The most frequent terms used as synonyms of FM were mobility, mobility in association with functional activities/performance, motor function, gait-related activity, or balance. In the literature, the Timed Up and Go (TUG) test was the most frequently reported tool used as a single instrument to assess FM in PD. The changes from baseline in the TUG Cognitive test, step length, and free-living step time asymmetry were identified as the best predictors of TUG changes. Conclusion: The information generated by the different studies included in this thesis revealed FM as a useful concept to be adopted in the PD field. FM was shown to be a meaningful outcome (for patients and health professionals), easy to measure, and able to provide more global and ecological information on patients’ daily living performances. Our results support the use of FM for PD assessment and free-living monitoring, as a way to better understand and address patients’ needs. The changes in the TUG Cognitive test, the supervised step length, and the free-living step time asymmetry seem the most suitable outcomes to measure an effect in FM. Future research should focus on determining the severity cut-off for FM changes, the minimal clinical important difference (MCID) for each of these outcome measures and resolve the current obstacles to the widespread use of technological assessments in PD clinical practice and research
    • …
    corecore