200 research outputs found

    Networking Mechanisms for Delay-Sensitive Applications

    Get PDF
    The diversity of applications served by the explosively growing Internet is increasing. In particular, applications that are sensitive to end-to-end packet delays become more common and include telephony, video conferencing, and networked games. While the single best-effort service of the current Internet favors throughput-greedy traffic by equipping congested links with large buffers, long queuing at the congested links hurts the delay-sensitive applications. Furthermore, while numerous alternative architectures have been proposed to offer diverse network services, the innovative alternatives failed to gain widespread end-to-end deployment. This dissertation explores different networking mechanisms for supporting low queueing delay required by delay-sensitive applications. In particular, it considers two different approaches. The first one assumes employing congestion control protocols for the traffic generated by the considered class of applications. The second approach relies on the router operation only and does not require support from end hosts

    Enabling a Low-delay Internet Service via Built-in Performance Incentives

    Get PDF
    The single best-effort service of the Internet struggles to accommodate divergent needs of different distributed applications. Numerous alternative network architectures have been proposed to offer diversified network services. These innovative solutions failed to gain wide deployment primarily due to economic and legacy issues rather than technical shortcomings. Our paper presents a new simple paradigm for network service differentiation that accounts explicitly for the multiplicity of Internet service providers and users as well as their economic interests in environments with partly deployed new services. Our key idea is to base the service differentiation on performance itself, rather than price. We design RD (Rate-Delay) network services that give a user an opportunity to choose between a higher transmission rate or low queuing delay at a congested network link. To support the two services, an RD router maintains two queues per output link and achieves the intended ratedelay differentiation through simple link scheduling and dynamic buffer sizing. Our extensive evaluation of the RD network services reports their performance, deployability, and security properties

    Minimizing queueing delays in computer networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Queue Length Analysis of End-to-end Differentiated Service Networks with Self-similar Traffic

    Get PDF
    In this thesis, a novel analytical model is proposed based on the arrival rate and the service rate for multiple hops queuing systems. Then the mathematical derivations are extended to end-to-end differentiated service networks with self-similar traffic. The upper and lower bound of the queue length at each hop is derived. The results illustrate the performance gain in queue length at each hop. Finally, a novel adaptive admission controller algorithm is proposed based on the arrival rate and the service rate for multiple hop queuing systems with self-similar network traffic. The adaptive admission controller algorithm can provide a guaranteed QoS performance for the higher priority classes, as long as the highest class QoS requests do not exceed the comprehensive network resources.Computer Science Departmen

    Network level performance of differentiated services (diffserv) networks

    Get PDF
    The Differentiated Services (DiffServ) architecture is a promising means of providing Quality of Service (QoS) in Internet. In DiffServ networks, three service classes, or Per-hop Behaviors (PHBs), have been defined: Expedited Forwarding (EF), Assured Forwarding (AF) and Best Effort (BE). In this dissertation, the performance of DiffServ networks at the network level, such as end-to-end QoS, network stability, and fairness of bandwidth allocation over the entire network have been extensively investigated. It has been shown in literature that the end-to-end delay of EF traffic can go to infinity even in an over-provisioned network. In this dissertation, a simple scalable aggregate scheduling scheme, called Youngest Serve First (YSF) algorithm is proposed. YSF is not only able to guarantee finite end-to-end delay, but also to keep a low scheduling complexity. With respect to the Best Effort traffic, Random Exponential Marking (REM), an existing AQM scheme is studied under a new continuous time model, and its local stable condition is presented. Next, a novel virtual queue and rate based AQM scheme (VQR) is proposed, and its local stability condition has been presented. Then, a new AQM framework, Edge-based AQM (EAQM) is proposed. EAQM is easier to implement, and it achieves similar or better performance than traditional AQM schemes. With respect to the Assured Forwarding, a network-assist packet marking (NPM) scheme has been proposed. It has been demonstrated that NPM can fairly distribute bandwidth among AF aggregates based on their Committed Information Rates (CIRs) in both single and multiple bottleneck link networks

    Just Queuing: Policy-Based Scheduling Mechanism for Packet Switching Networks

    Get PDF
    The pervasiveness of the Internet and its applications lead to the potential increment of the users’ demands for more services with economical prices. The diversity of Internet traffic requires some classification and prioritisation since some traffic deserve much attention with less delay and loss compared to others. Current scheduling mechanisms are exposed to the trade-off between three major properties namely fairness, complexity and protection. Therefore, the question remains about how to improve the fairness and protection with less complex implementation. This research is designed to enhance scheduling mechanism by providing sustainability to the fairness and protection properties with simplicity in implementation; and hence higher service quality particularly for real-time applications. Extra elements are applied to the main fairness equation to improve the fairness property. This research adopts the restricted charge policy which imposes the protection of normal user. In terms of the complexity property, genetic algorithm has an advantage in holding the fitness score of the queue in separate storage space which potentially minimises the complexity of the algorithm. The integrity between conceptual, analytical and experimental approach verifies the efficiency of the proposed mechanism. The proposed mechanism is validated by using the emulation and the validation experiments involve real router flow data. The results of the evaluation showed fair bandwidth distribution similar to the popular Weighted Fair Queuing (WFQ) mechanism. Furthermore, better protection was exhibited in the results compared with the WFQ and two other scheduling mechanisms. The complexity of the proposed mechanism reached O(log(n)) which is considered as potentially low. Furthermore, this mechanism is limited to the wired networks and hence future works could improve the mechanism to be adopted in mobile ad-hoc networks or any other wireless networks. Moreover, more improvements could be applied to the proposed mechanism to enhance its deployment in the virtual circuits switching network such as the asynchronous transfer mode networks

    A Real-Time Communication Framework for Wireless Sensor Networks

    Get PDF
    Recent advances in miniaturization and low power design have led to a flurry of activity in wireless sensor networks. Sensor networks have different constraints than traditional wired networks. A wireless sensor network is a special network with large numbers of nodes equipped with embedded processors, sensors, and radios. These nodes collaborate to accomplish a common task such as environment monitoring or asset tracking. In many applications, sensor nodes will be deployed in an ad-hoc fashion without careful planning. They must organize themselves to form a multihop, wireless communication network. In sensor network environments, much research has been conducted in areas such as power consumption, self-organisation techniques, routing between the sensors, and the communication between the sensor and the sink. On the other hand, real-time communication with the Quality of Service (QoS) concept in wireless sensor networks is still an open research field. Most protocols either ignore real time or simply attempt to process as fast as possible and hope that this speed is sufficient to meet the deadline. However, the introduction of real-time communication has created additional challenges in this area. The sensor node spends most of its life routing packets from one node to another until the packet reaches the sink; therefore, the node functions as a small router most of the time. Since sensor networks deal with time-critical applications, it is often necessary for communication to meet real time constraints. However, research that deals with providing QoS guarantees for real-time traffic in sensor networks is still in its infancy.This thesis presents a real-time communication framework to provide quality of service in sensor networks environments. The proposed framework consists of four components: First, present an analytical model for implementing Priority Queuing (PQ) in a sensor node to calculate the queuing delay. The exact packet delay for corresponding classes is calculated. Further, the analytical results are validated through an extensive simulation study. Second, report on a novel analytical model based on a limited service polling discipline. The model is based on an M/D/1 queuing system (a special class of M/G/1 queuing systems), which takes into account two different classes of traffic in a sensor node. The proposed model implements two queues in a sensor node that are served in a round robin fashion. The exact queuing delay in a sensor node for corresponding classes is calculated. Then, the analytical results are validated through an extensive simulation study. Third, exhibit a novel packet delivery mechanism, namely the Multiple Level Stateless Protocol (MLSP), as a real-time protocol for sensor networks to guarantee the traffic in wireless sensor networks. MLSP improves the packet loss rate and the handling of holes in sensor network much better than its counterpart, MMSPEED. It also introduces the k-limited polling model for the first time. In addition, the whole sending packets dropped significantly compared to MMSPEED, which it leads to decrease the consumption power. Fourth, explain a new framework for moving data from the sink to the user, at a low cost and low power, using the Universal Mobile Telecommunication System (UMTS), which is standard for the Third Generation Mobile System (3G). The integration of sensor networks with the 3G mobile network infrastructure will reduce the cost of building new infrastructures and enable the large-scale deployment of sensor network

    Towards Internet QoS Provisioning Based on Generic Distributed QoS Adaptive Routing Engine

    Get PDF
    Increasing efficiency and quality demands of modern Internet technologies drive today’s network engineers to seek to provide quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA) based on dynamic programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature
    corecore