91 research outputs found

    Dynamic routing of reliability-differentiated connections in WDM optical networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Lightpath routing with survivability requirements in WDM optical mesh networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Availability-Aware Spare Capacity Allocation with Partially Protected Rings

    Get PDF
    This thesis work focuses on designing a survivable IP-core network with the minimal investment of spare capacity. A span-oriented spare capacity allocation (SCA) scheme is proposed to satisfy customers' availability requirements in the end-to-end (E2E) sense. The novelty of the proposed SCA scheme is that it meets the E2E availability requirements despite the lack of knowledge of E2E bandwidth by employing protection rings covering all links in the network. Different ring selection methods are presented and also compared from the aspect of network redundancy and LP feasibility which provide more flexibility to the design. The proposed SCA algorithm further minimizes total cost of spare capacity by incorporating partial protection within the proposed architecture. The simulation results show that it can significantly reduce the spare capacity consumption depending on the availability. The proposed SCA scheme also performs better in terms of redundancy than that of two other dominant methods available these days

    Multi-layer survivability in IP-over-WDM networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Particle swarm optimization for routing and wavelength assignment in next generation WDM networks.

    Get PDF
    PhDAll-optical Wave Division Multiplexed (WDM) networking is a promising technology for long-haul backbone and large metropolitan optical networks in order to meet the non-diminishing bandwidth demands of future applications and services. Examples could include archival and recovery of data to/from Storage Area Networks (i.e. for banks), High bandwidth medical imaging (for remote operations), High Definition (HD) digital broadcast and streaming over the Internet, distributed orchestrated computing, and peak-demand short-term connectivity for Access Network providers and wireless network operators for backhaul surges. One desirable feature is fast and automatic provisioning. Connection (lightpath) provisioning in optically switched networks requires both route computation and a single wavelength to be assigned for the lightpath. This is called Routing and Wavelength Assignment (RWA). RWA can be classified as static RWA and dynamic RWA. Static RWA is an NP-hard (non-polynomial time hard) optimisation task. Dynamic RWA is even more challenging as connection requests arrive dynamically, on-the-fly and have random connection holding times. Traditionally, global-optimum mathematical search schemes like integer linear programming and graph colouring are used to find an optimal solution for NP-hard problems. However such schemes become unusable for connection provisioning in a dynamic environment, due to the computational complexity and time required to undertake the search. To perform dynamic provisioning, different heuristic and stochastic techniques are used. Particle Swarm Optimisation (PSO) is a population-based global optimisation scheme that belongs to the class of evolutionary search algorithms and has successfully been used to solve many NP-hard optimisation problems in both static and dynamic environments. In this thesis, a novel PSO based scheme is proposed to solve the static RWA case, which can achieve optimal/near-optimal solution. In order to reduce the risk of premature convergence of the swarm and to avoid selecting local optima, a search scheme is proposed to solve the static RWA, based on the position of swarm‘s global best particle and personal best position of each particle. To solve dynamic RWA problem, a PSO based scheme is proposed which can provision a connection within a fraction of a second. This feature is crucial to provisioning services like bandwidth on demand connectivity. To improve the convergence speed of the swarm towards an optimal/near-optimal solution, a novel chaotic factor is introduced into the PSO algorithm, i.e. CPSO, which helps the swarm reach a relatively good solution in fewer iterations. Experimental results for PSO/CPSO based dynamic RWA algorithms show that the proposed schemes perform better compared to other evolutionary techniques like genetic algorithms, ant colony optimization. This is both in terms of quality of solution and computation time. The proposed schemes also show significant improvements in blocking probability performance compared to traditional dynamic RWA schemes like SP-FF and SP-MU algorithms

    Enhanced connectivity in wireless mobile programmable networks

    Get PDF
    MenciĂłn Interancional en el tĂ­tulo de doctorThe architecture of current operator infrastructures is being challenged by the non-stop growing demand of data hungry services appearing every day. While currently deployed operator networks have been able to cope with traffic demands so far, the architectures for the 5th generation of mobile networks (5G) are expected to support unprecedented traffic loads while decreasing costs associated with the network deployment and operations. Indeed, the forthcoming set of 5G standards will bring programmability and flexibility to levels never seen before. This has required introducing changes in the architecture of mobile networks, enabling different features such as the split of control and data planes, as required to support rapid programming of heterogeneous data planes. Network softwarisation is hence seen as a key enabler to cope with such network evolution, as it permits controlling all networking functions through (re)programming, thus providing higher flexibility to meet heterogeneous requirements while keeping deployment and operational costs low. A great diversity in terms of traffic patterns, multi-tenancy, heterogeneous and stringent traffic requirements is therefore expected in 5G networks. Software Defined Networking (SDN) and Network Function Virtualisation (NFV) have emerged as a basic tool-set for operators to manage their infrastructure with increased flexibility and reduced costs. As a result, new 5G services can now be envisioned and quickly programmed and provisioned in response to user and market necessities, imposing a paradigm shift in the services design. However, such flexibility requires the 5G transport network to undergo a profound transformation, evolving from a static connectivity substrate into a service-oriented infrastructure capable of accommodating the various 5G services, including Ultra-Reliable and Low Latency Communications (URLLC). Moreover, to achieve the desired flexibility and cost reduction, one promising approach is to leverage virtualisation technologies to dynamically host contents, services, and applications closer to the users so as to offload the core network and reduce the communication delay. This thesis tackles the above challengeswhicharedetailedinthefollowing. A common characteristic of the 5G servicesistheubiquityandthealmostpermanent connection that is required from the mobile network. This really imposes a challenge in thesignallingproceduresprovidedtogettrack of the users and to guarantee session continuity. The mobility management mechanisms will hence play a central role in the 5G networks because of the always-on connectivity demand. Distributed Mobility Management (DMM) helps going towards this direction, by flattening the network, hence improving its scalability,andenablinglocalaccesstotheInternet and other communication services, like mobile-edge clouds. Simultaneously, SDN opens up the possibility of running a multitude of intelligent and advanced applications for network optimisation purposes in a centralised network controller. The combination of DMM architectural principles with SDN management appears as a powerful tool for operators to cope with the management and data burden expected in 5G networks. To meet the future mobile user demand at a reduced cost, operators are also looking at solutions such as C-RAN and different functional splits to decrease the cost of deploying and maintaining cell sites. The increasing stress on mobile radio access performance in a context of declining revenues for operators is hence requiring the evolution of backhaul and fronthaul transport networks, which currently work decoupled. The heterogeneity of the nodes and transmisiĂłn technologies inter-connecting the fronthaul and backhaul segments makes the network quite complex, costly and inefficient to manage flexibly and dynamically. Indeed, the use of heterogeneous technologies forces operators to manage two physically separated networks, one for backhaul and one forfronthaul. In order to meet 5G requirements in a costeffective manner, a unified 5G transport network that unifies the data, control, and management planes is hence required. Such an integrated fronthaul/backhaul transport network, denoted as crosshaul, will hence carry both fronthaul and backhaul traffic operating over heterogeneous data plane technologies, which are software-controlled so as to adapt to the fluctuating capacity demand of the 5G air interfaces. Moreover, 5G transport networks will need to accommodate a wide spectrum of services on top of the same physical infrastructure. To that end, network slicing is seen as a suitable candidate for providing the necessary Quality of Service (QoS). Traffic differentiation is usually enforced at the border of the network in order to ensure a proper forwarding of the traffic according to its class through the backbone. With network slicing, the traffic may now traverse many slice edges where the traffic policy needs to be enforced, discriminated and ensured, according to the service and tenants needs. However, the very basic nature that makes this efficient management and operation possible in a flexible way – the logical centralisation – poses important challenges due to the lack of proper monitoring tools, suited for SDN-based architectures. In order to take timely and right decisions while operating a network, centralised intelligence applications need to be fed with a continuous stream of up-to-date network statistics. However, this is not feasible with current SDN solutions due to scalability and accuracy issues. Therefore, an adaptive telemetry system is required so as to support the diversity of 5G services and their stringent traffic requirements. The path towards 5G wireless networks alsopresentsacleartrendofcarryingoutcomputations close to end users. Indeed, pushing contents, applications, and network functios closer to end users is necessary to cope with thehugedatavolumeandlowlatencyrequired in future 5G networks. Edge and fog frameworks have emerged recently to address this challenge. Whilst the edge framework was more infrastructure-focused and more mobile operator-oriented, the fog was more pervasive and included any node (stationary or mobile), including terminal devices. By further utilising pervasive computational resources in proximity to users, edge and fog can be merged to construct a computing platform, which can also be used as a common stage for multiple radio access technologies (RATs) to share their information, hence opening a new dimension of multi-RAT integration.La arquitectura de las infraestructuras actuales de los operadores estĂĄ siendo desafiada por la demanda creciente e incesante de servicios con un elevado consumo de datos que aparecen todos los dĂ­as. Mientras que las redes de operadores implementadas actualmente han sido capaces de lidiar con las demandas de trĂĄfico hasta ahora, se espera que las arquitecturas de la quinta generaciĂłn de redes mĂłviles (5G) soporten cargas de trĂĄfico sin precedentes a la vez que disminuyen los costes asociados a la implementaciĂłn y operaciones de la red. De hecho, el prĂłximo conjunto de estĂĄndares 5G traerĂĄ la programabilidad y flexibilidad a niveles nunca antes vistos. Esto ha requerido la introducciĂłn de cambios en la arquitectura de las redes mĂłviles, lo que permite diferentes funciones, como la divisiĂłn de los planos de control y de datos, segĂșn sea necesario para soportar una programaciĂłn rĂĄpida de planos de datos heterogĂ©neos. La softwarisaciĂłn de red se considera una herramienta clave para hacer frente a dicha evoluciĂłn de red, ya que proporciona la capacidad de controlar todas las funciones de red mediante (re)programaciĂłn, proporcionando asĂ­ una mayor flexibilidad para cumplir requisitos heterogĂ©neos mientras se mantienen bajos los costes operativos y de implementaciĂłn. Por lo tanto, se espera una gran diversidad en tĂ©rminos de patrones de trĂĄfico, multi-tenancy, requisitos de trĂĄfico heterogĂ©neos y estrictos en las redes 5G. Software Defined Networking (SDN) y Network Function Virtualisation (NFV) se han convertido en un conjunto de herramientas bĂĄsicas para que los operadores administren su infraestructura con mayor flexibilidad y menores costes. Como resultado, los nuevos servicios 5G ahora pueden planificarse, programarse y aprovisionarse rĂĄpidamente en respuesta a las necesidades de los usuarios y del mercado, imponiendo un cambio de paradigma en el diseño de los servicios. Sin embargo, dicha flexibilidad requiere que la red de transporte 5G experimente una transformaciĂłn profunda, que evoluciona de un sustrato de conectividad estĂĄtica a una infraestructura orientada a servicios capaz de acomodar los diversos servicios 5G, incluso Ultra-Reliable and Low Latency Communications (URLLC). AdemĂĄs, para lograr la flexibilidad y la reducciĂłn de costes deseadas, un enfoque prometedores aprovechar las tecnologĂ­as de virtualizaciĂłn para alojar dinĂĄmicamente los contenidos, servicios y aplicaciones mĂĄs cerca de los usuarios para descargar la red central y reducir la latencia. Esta tesis aborda los desafĂ­os anteriores que se detallan a continuaciĂłn. Una caracterĂ­stica comĂșn de los servicios 5G es la ubicuidad y la conexiĂłn casi permanente que se requiere para la red mĂłvil. Esto impone un desafĂ­o en los procedimientos de señalizaciĂłn proporcionados para hacer un seguimiento de los usuarios y garantizar la continuidad de la sesiĂłn. Por lo tanto, los mecanismos de gestiĂłn de la movilidad desempeñarĂĄn un papel central en las redes 5G debido a la demanda de conectividad siempre activa. Distributed Mobility Management (DMM) ayuda a ir en esta direcciĂłn, al aplanar la red, lo que mejora su escalabilidad y permite el acceso local a Internet y a otros servicios de comunicaciones, como recursos en “nubes” situadas en el borde de la red mĂłvil. Al mismo tiempo, SDN abre la posibilidad de ejecutar una multitud de aplicaciones inteligentes y avanzadas para optimizar la red en un controlador de red centralizado. La combinaciĂłn de los principios arquitectĂłnicos DMM con SDN aparece como una poderosa herramienta para que los operadores puedan hacer frente a la carga de administraciĂłn y datos que se espera en las redes 5G. Para satisfacer la demanda futura de usuarios mĂłviles a un coste reducido, los operadores tambiĂ©n estĂĄn buscando soluciones tales como C-RAN y diferentes divisiones funcionales para disminuir el coste de implementaciĂłn y mantenimiento de emplazamientos celulares. El creciente estrĂ©s en el rendimiento del acceso a la radio mĂłvil en un contexto de menores ingresos para los operadores requiere, por lo tanto, la evoluciĂłn de las redes de transporte de backhaul y fronthaul, que actualmente funcionan disociadas. La heterogeneidad de los nodos y las tecnologĂ­as de transmisiĂłn que interconectan los segmentos de fronthaul y backhaul hacen que la red sea bastante compleja, costosa e ineficiente para gestionar de manera flexible y dinĂĄmica. De hecho, el uso de tecnologĂ­as heterogĂ©neas obliga a los operadores a gestionar dos redes separadas fĂ­sicamente, una para la red de backhaul y otra para el fronthaul. Para cumplir con los requisitos de 5G de manera rentable, se requiere una red de transporte Ășnica 5G que unifique los planos de control, datos y de gestiĂłn. Dicha red de transporte fronthaul/backhaul integrada, denominada “crosshaul”, transportarĂĄ trĂĄfico de fronthaul y backhaul operando sobre tecnologĂ­as heterogĂ©neas de plano de datos, que estĂĄn controladas por software para adaptarse a la demanda de capacidad fluctuante de las interfaces radio 5G. AdemĂĄs, las redes de transporte 5G necesitarĂĄn acomodar un amplio espectro de servicios sobre la misma infraestructura fĂ­sica y el network slicing se considera un candidato adecuado para proporcionar la calidad de servicio necesario. La diferenciaciĂłn del trĂĄfico generalmente se aplica en el borde de la red para garantizar un reenvĂ­o adecuado del trĂĄfico segĂșn su clase a travĂ©s de la red troncal. Con el networkslicing, el trĂĄfico ahora puede atravesar muchos fronteras entre “network slices” donde la polĂ­tica de trĂĄfico debe aplicarse, discriminarse y garantizarse, de acuerdo con las necesidades del servicio y de los usuarios. Sin embargo, el principio bĂĄsico que hace posible esta gestiĂłn y operaciĂłn eficientes de forma flexible – la centralizaciĂłn lĂłgica – plantea importantes desafĂ­os debido a la falta de herramientas de supervisiĂłn necesarias para las arquitecturas basadas en SDN. Para tomar decisiones oportunas y correctas mientras se opera una red, las aplicaciones de inteligencia centralizada necesitan alimentarse con un flujo continuo de estadĂ­sticas de red actualizadas. Sin embargo, esto no es factible con las soluciones SDN actuales debido a problemas de escalabilidad y falta de precisiĂłn. Por lo tanto, se requiere un sistema de telemetrĂ­a adaptable para respaldar la diversidad de los servicios 5G y sus estrictos requisitos de trĂĄfico. El camino hacia las redes inalĂĄmbricas 5G tambiĂ©n presenta una tendencia clara de realizar acciones cerca de los usuarios finales. De hecho, acercar los contenidos, las aplicaciones y las funciones de red a los usuarios finales es necesario para hacer frente al enorme volumen de datos y la baja latencia requerida en las futuras redes 5G. Los paradigmas de “edge” y “fog” han surgido recientemente para abordar este desafĂ­o. Mientras que el edge estĂĄ mĂĄs centrado en la infraestructura y mĂĄs orientado al operador mĂłvil, el fog es mĂĄs ubicuo e incluye cualquier nodo (fijo o mĂłvil), incluidos los dispositivos finales. Al utilizar recursos de computaciĂłn de propĂłsito general en las proximidades de los usuarios, el edge y el fog pueden combinarse para construir una plataforma de computaciĂłn, que tambiĂ©n se puede utilizar para compartir informaciĂłn entre mĂșltiples tecnologĂ­as de acceso radio (RAT) y, por lo tanto, abre una nueva dimensiĂłn de la integraciĂłn multi-RAT.Programa Oficial de Doctorado en IngenierĂ­a TelemĂĄticaPresidente: Carla Fabiana Chiasserini.- Secretario: Vincenzo Mancuso.- Vocal: Diego Rafael LĂłpez GarcĂ­

    Availability-driven optimal design of shared path protection in WDM networks

    Get PDF
    The success of the Internet has led many activities to be highly dependent on the good quality of the service that the network can provide. Failures can be very disruptive if systems without enough backup resources are in place. In this paper we propose a new way of determining how many backup resources must be provided to guarantee a given level of availability to critical services in the core of the network. The biggest impact of this work lies in how network providers design and deploy their infrastructure

    Student Reference Manual for Apollo MSFN Indoctrination

    Get PDF
    Astronaut reference manual for Apollo lunar landing mission networ
    • 

    corecore