206 research outputs found

    Port-Hamiltonian modeling for soft-finger manipulation

    Get PDF
    In this paper, we present a port-Hamiltonian model of a multi-fingered robotic hand, with soft-pads, while grasping and manipulating an object. The algebraic constraints of the interconnected systems are represented by a geometric object, called Dirac structure. This provides a powerful way to describe the non-contact to contact transition and contact viscoelasticity, by using the concepts of energy flows and power preserving interconnections. Using the port based model, an Intrinsically Passive Controller (IPC) is used to control the internal forces. Simulation results validate the model and demonstrate the effectiveness of the port-based approach

    Development of a Fabrication Technique for Soft Planar Inflatable Composites

    Get PDF
    Soft robotics is a rapidly growing field in robotics that combines aspects of biologically inspired characteristics to unorthodox methods capable of conforming and/or adapting to unknown tasks or environments that would otherwise be improbable or complex with conventional robotic technologies. The field of soft robotics has grown rapidly over the past decade with increasing popularity and relevance to real-world applications. However, the means of fabricating these soft, compliant and intricate robots still poses a fundamental challenge, due to the liberal use of soft materials that are difficult to manipulate in their original state such as elastomers and fabric. These material properties rely on informal design approaches and bespoke fabrication methods to build soft systems. As such, there are a limited variety of fabrication techniques used to develop soft robots which hinders the scalability of robots and the time to manufacture, thus limiting their development. This research focuses towards developing a novel fabrication method for constructing soft planar inflatable composites. The fundamental method is based on a sub-set of additive manufacturing known as composite layering. The approach is designed from a planar manner and takes layers of elastomeric materials, embedded strain-limiting and mask layers. These components are then built up through a layer-by-layer fabrication method with the use of a bespoke film applicator set-up. This enables the fabrication of millimetre-scale soft inflatable composites with complex integrated masks and/or strain-limiting layers. These inflatable composites can then be cut into a desired shape via laser cutting or ablation. A design approach was also developed to expand the functionality of these inflatable composites through modelling and simulation via finite element analysis. Proof of concept prototypes were designed and fabricated to enable pneumatic driven actuation in the form of bending soft actuators, adjustable stiffness sensor, and planar shape change. This technique highlights the feasibility of the fabrication method and the value of its use in creating multi-material composite soft actuators which are thin, compact, flexible, and stretchable and can be applicable towards real-world application

    Output-Based Control of Robots with Variable Stiffness Actuation

    Get PDF
    The output-based control of a redundant robotic manipulator with relevant and adjustable joint stiffness is addressed. The proposed controller is configured as a cascade system that allows the decoupling of the actuators dynamics from the arm dynamics and the consequent reduction of the order of the manipulator dynamic model. Moreover, the proposed controller does not require the knowledge of the whole robot state: only the positions of the actuators and of the joints are necessary. This approach represents a significant simplification with respect to previously proposed state feedback techniques. The problem of controlling simultaneously the position trajectory and the desired stiffness in both the joint and work space is investigated, and the relations between the manipulator redundancy and the selection of both the joint and work space stiffness of the manipulator are discussed. The effectiveness of the proposed approach is verified by simulations of a 3 degrees of freedom planar manipulator

    Stretchable metallization technologies for skin-like transducers

    Get PDF
    The skin is not only the largest human organ, capable of accomplishing distributed and multimodal sensing functions. Replicating the versatility of skin artificially is a significant challenge, not only in terms of signal processing but also in mechanics. Stretchable electronics are an approach designed to cover human and artificial limbs and provide wearable sensing capabilities: motion sensors distributed on the hand of neurologically impaired patients could help therapists quantify their abilities; prostheses equipped with multiple tactile sensors could enable amputees to naturally adjust their grasp force. Skin-like electronic systems have specific requirements: they must mechanically adapt to the deformations imposed by the body they equip with minimal impediment to its natural movements, while also providing sufficient electrical performance for sensor transduction and passing electrical signals and power. A metallization ensuring stable conductivity under large strains is a prerequisite to designing and assembling wearable circuits that are integrated with several types of sensors. In this work, two innovative metallization processes have been developed to enable scalable integration of multiple sensing modalities in stretchable circuits. First, stretchable micro-cracked gold (Au) thin films were interfaced with gallium indium eutectic (EGaIn) liquid metal wires. The Au films, thermally evaporated on silicone elastomer substrates, combined high sheet resistance (9 to 30 Ohm/sq) and high sensitivity to strain up to 50%. The EGaIn wires drawn using a micro-plotting setup had a low gauge factor (2) and a low sheet resistance (5 mOhm/sq). Second, a novel physical vapor deposition method to deposit of thin gallium-based biphasic (solid-liquid) films over large areas was achieved. The obtained conductors combined a low sheet resistance (0.5 Ohm/sq), a low gauge factor (~1 up to 80% strain), and a failure strain of more than 400%. They could be patterned down to 10 µm critical dimensions. Skin-like sensors for the hand were assembled using the two processes and their capabilities were demonstrated. Thin (0.5 mm) silicone strips integrating EGaIN wires and micro-cracked Au strain gauges were mounted on gloves to encode the position of a biomimetic robotic finger and a human finger. In combination with soft pressure sensors, they enabled precise grasp analysis over a limited range of motion. Then, biphasic films were micro-patterned on silicone to assemble 50 µm thin epidermal strain gauges. The strain gauges were attached on a user's finger and accurately encoded fine grasping tasks covering most of the human hand range of motion. The biphasic films were also used to power wireless MEMS pressure sensors integrated in a rubber scaffold. The device was mounted on a prosthetic hand to encode normal forces in the 0 N to 20 N range with excellent linearity. The epidermal strain sensors are currently being used to quantify the tremors of patients with Parkinson's disease. In the future, the unique properties of the biphasic films could enable advanced artificial skins integrating a high density of soft transducers and traditional high-performance circuits

    Modeling & Analysis of Design Parameters for Portable Hand Orthoses to Assist Upper Motor Neuron Syndrome Impairments and Prototype Design

    Get PDF
    Wearable assistive robotics have the potential to address an unmet medical need of reducing disability in individuals with chronic hand impairments due to neurological trauma. Despite myriad prior works, few patients have seen the benefits of such devices. Following application experience with tendon-actuated soft robotic gloves and a collaborator\u27s orthosis with novel flat-spring actuators, we identified two common assumptions regarding hand orthosis design. The first was reliance on incomplete studies of grasping forces during activities of daily living as a basis for design criteria, leading to poor optimization. The second was a neglect of increases in muscle tone following neurological trauma, rendering most devices non-applicable to a large subset of the population. To address these gaps, we measured joint torques during activities of daily living with able-bodied subjects using dexterity representative of orthosis-aided motion. Next, we measured assistive torques needed to extend the fingers of individuals with increased flexor tone following TBI. Finally, we applied this knowledge to design a cable actuated orthosis for assisting finger extension, providing a basis for future work focused on an under-represented subgroup of patients

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Design of a wearable active ankle-foot orthosis for both sides

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Biomateriais, Reabilitação e Biomecânica)Portugal is the west European country with the highest rate of stroke-related mortality, being that, of those who suffer cerebrovascular accidents, 40% feature an impairment which can manifest itself through motor sequelae, namely drop foot. An ankle-foot orthosis is often recommended to passively accommodate these motor problems; however, active/powered exoskeletons are also a suitable solution for post-stroke patients. Due to the high complexity of the human ankle joint, one of the problems regarding these active devices is the misalignment occurring between the rehabilitation device and the human joint, which is a cause of parasitic forces, discomfort, and pain. The present master dissertation proposes the development of an adjustable wearable active ankle-foot orthosis that is able to tackle this misalignment issue concerning commercially available lower limb orthotic devices. This work is integrated on the SmartOs – Smart, Stand-alone Active Orthotic System – project that proposes an innovative robotic technology (a wearable mobile lab) oriented to gait rehabilitation. The conceptual design of a standard version of the SmartOs wearable active orthosis was initiated with the analysis of another ankle-foot orthosis – Exo-H2 (Technaid) – from which the necessary design changes were implemented, aiming at the improvement of the established device. In order to achieve a conceptual solution, both the practical knowledge of the Orthos XXI design team and several design methods were used to ensure the accomplishment of the defined requirements. The detailed design process of the standard SmartOs wearable active orthosis prototype is disclosed. With the purpose of validating the design, the critical components were simulated with the resources available in SolidWorks®, and the necessary CAD model’s adaptations were implemented to guarantee a reliable and safe design. The presented design is currently set for further production in Orthos XXI, followed by the mandatory mechanical tests.Portugal é o país da Europa ocidental com maior taxa de mortalidade por acidente vascular cerebral (AVC), sendo que, dos que sofrem acidentes vasculares cerebrais, 40% apresentam uma deficiência que pode manifestar-se por sequelas motoras, nomeadamente o pé pendente. Uma ortótese do tornozelo é recomendada frequentemente para acomodar passivamente esses problemas motores; no entanto, exoesqueletos ativos são também uma solução adequada para pacientes pós-AVC. Devido à alta complexidade da articulação do tornozelo humano, um dos problemas associados a esses dispositivos ativos é o desalinhamento que ocorre entre o dispositivo de reabilitação e a articulação humana, que é uma causa de forças parasitas, desconforto e dor. A presente dissertação de mestrado propõe o desenvolvimento de uma ortótese ativa do tornozelo ajustável e vestível, que seja capaz de resolver esse problema de desalinhamento relativo aos dispositivos ortóticos de membros inferiores disponíveis comercialmente. Este trabalho está integrado no projeto SmartOs - Smart, Stand-alone Active Orthotic System - projeto que propõe uma tecnologia robótica inovadora (wearable mobile lab) direcionada para a reabilitação da marcha. O projeto conceptual de uma versão padrão da ortótese ativa vestível do projeto SmartOs foi iniciado com a análise de outra ortótese do tornozelo – Exo-H2 (Technaid) - a partir da qual foram implementadas as alterações de projeto necessárias, visando o aprimoramento do dispositivo estabelecido. Para se chegar a uma solução conceptual, tanto o conhecimento prático da equipa de projeto da Orthos XXI como os diversos métodos de projeto foram utilizados para garantir o cumprimento dos requisitos definidos. O processo do desenho detalhado da versão padrão da ortótese ativa SmartOs será também divulgado. Com o objetivo de validar o projeto, os componentes críticos foram simulados com os recursos disponíveis no SolidWorks® e as adaptações necessárias do modelo CAD foram implementadas para garantir um projeto fidedigno e seguro. O projeto apresentado está atualmente em preparação para produção na empresa Orthos XXI, depois do qual se seguem os ensaios mecânicos obrigatórios
    corecore