181 research outputs found

    A Survey on Adaptive Multimedia Streaming

    Get PDF
    Internet was primarily designed for one to one applications like electronic mail, reliable file transfer etc. However, the technological growth in both hardware and software industry have written in unprecedented success story of the growth of Internet and have paved the paths of modern digital evolution. In today’s world, the internet has become the way of life and has penetrated in its every domain. It is nearly impossible to list the applications which make use of internet in this era however, all these applications are data intensive and data may be textual, audio or visual requiring improved techniques to deal with these. Multimedia applications are one of them and have witnessed unprecedented growth in last few years. A predominance of that is by virtue of different video streaming applications in daily life like games, education, entertainment, security etc. Due to the huge demand of multimedia applications, heterogeneity of demands and limited resource availability there is a dire need of adaptive multimedia streaming. This chapter provides the detail discussion over different adaptive multimedia streaming mechanism over peer to peer network

    iPASS: Incentivized Peer-Assisted System for Asynchronous Streaming

    Full text link

    Challenges, Designs, and Performances of Large-Scale Open-P2SP Content Distribution

    Full text link

    Statistically Quality Assured Streaming Architecture For Dynamic Peer To Peer Networks

    Full text link

    Supporting Non-Linear and Non-Continuous Media Access in Peer-to-Peer Multimedia Systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Employing H.264 Coarse and Medium Grain Scalable Video to Optimize Video Playback over Passive Optical Networks

    Get PDF
    In this work, we propose the use of Coarse Grain Scalable (CGS) and Medium Grain Scalable (MGS) H.264/AVC video to optimize video playback on passive optical networks (PONs) by investigating network performance metrics such as data delay, video delay, and video delay jitter. Video playback is improved by sequentially dropping layers of scalable video. Dropping just a single CGS enhancement layer results in improvements of up to 57% for both data and video delay. However, video delay jitter benefits the most with an improvement ranging from 47% to 87%. Surprisingly, dropping subsequent CGS enhancement layers does not significantly improve the PONs performance. In order to remedy this effect, our focus switched to employing the H.264/AVC MGS video standard. Though video traffic delay is the primary object of optimization in this work, the proposed algorithm’s impacts on other network performance metrics such as data traffic delay and video traffic delay variance (jitter) are analyzed as well. Video playback is improved by employing an adaptive scalable video layer dropping algorithm which drops a progressively larger number of scalable video layers as network utilization increases as measured by the moving average of the video packet delay. The influence of the algorithm\u27s three parameters on its performance is investigated in detail, and the results of the optimized adaptive dropping algorithm are compared to baseline static dropping algorithm

    Hybrid Fixed-Mobile P2P Superdistribution

    Get PDF
    The Internet and the cellular telephony system are the two most influential communication systems of the last years. The arrival of the IP Multimedia Subsystem (IMS) promises to help service providers to deploy a complete array of real-time, customized business and consumer multimedia services over any access network. IMS is an integrated solution that defines a generic architecture for offering Voice over IP (VoIP) and advanced multimedia services. This project describes a hybrid fixed-mobile peer-to-peer superdistribution system deployed over an IMS platform. This superdistribution service is aligned with the current interests of telecommunication operators that desire to offer services with large user acceptance and that involve a massive access to the service without collapsing their network infrastructure. Operators can increase their revenues for connectivity and Digital Rights Management (DRM)-based license distribution of the multimedia content, depending on the content and on the desired business model

    PEER-TO-PEER 3D/MULTI-VIEW VIDEO STREAMING

    Get PDF
    Abstract The recent advances in stereoscopic video capture, compression and display have made 3D video a visually appealing and costly affordable technology. More sophisticated multi-view videos have also been demonstrated. Yet their remarkably increased data volume poses greater challenges to the conventional client/server systems. The stringent synchronization demands from different views further complicate the system design. In this thesis, we present an initial attempt toward efficient streaming of 3D videos over peer-to-peer networks. We show that the inherent multi-stream nature of 3D video makes playback synchronization more difficult. We address this by a 2-stream buffer, together with a novel segment scheduling. We further extend our system to support multi-view video with view diversity and dynamics. We have evaluated our system under different end-system and network configurations with typical stereo video streams. The simulation results demonstrate the superiority of our system in terms of scalability, streaming quality and dealing with view dynamics
    corecore