1,485 research outputs found

    Cache-Aware Memory Manager for Optimistic Simulations

    Get PDF
    Parallel Discrete Event Simulation is a well known technique for executing complex general-purpose simulations where models are described as objects the interaction of which is expressed through the generation of impulsive events. In particular, Optimistic Simulation allows full exploitation of the available computational power, avoiding the need to compute safety properties for the events to be executed. Optimistic Simulation platforms internally rely on several data structures, which are meant to support operations aimed at ensuring correctness, inter-kernel communication and/or event scheduling. These housekeeping and management operations access them according to complex patterns, commonly suffering from misuse of memory caching architectures. In particular, operations like log/restore access data structures on a periodic basis, producing the replacement of in-cache buffers related to the actual working set of the application logic, producing a non-negligible performance drop. In this work we propose generally-applicable design principles for a new memory management subsystem targeted at Optimistic Simulation platforms which can face this issue by wisely allocating memory buffers depending on their actual future access patterns, in order to enhance event-execution memory locality. Additionally, an application-transparent implementation within ROOT-Sim, an open-source generalpurpose optimistic simulation platform, is presented along with experimental results testing our proposal

    A software approach to enhancing quality of service in internet commerce

    Get PDF

    Towards Analytical Approach to Effective Website Designs: A Framework for Modeling, Evaluation and Enhancement

    Get PDF
    Conference Theme: I.T. and Value CreationEffective website design is critical to the success of electronic commerce and digital government. Most prior website design research has taken a computational or cognitive/behavioral approach which may not yield optimal designs demanded by specific requirements. We consider website design as a structural problem which can be examined using analytical approach, such as mathematical optimization. Specifically, we propose a framework which classifies real-world design problems into generic website design categories and maps each resulting category into a graph model which can be analyzable or solved using appropriate analytical techniques. Our framework consists of generic designs and graph models, together with the necessary mapping. We classify the Web site applications and review their features proposed by previous research. We describe a generic website design category using its objective and key constraints that correspond to important design requirements. By modeling website design problems using well-defined structures and rigorous analysis methods, this framework is able to measure website accessibility in a systematic and quantifiable manner, arguably more desirable than existing qualitative ad-hoc practices. Overall, our framework can facilitate the website design process, enhance design quality, and increase ease of analysis, implementation and continuous improvement.link_to_subscribed_fulltex

    A novel network architecture for train-to-wayside communication with quality of service over heterogeneous wireless networks

    Get PDF
    In the railway industry, there are nowadays different actors who would like to send or receive data from the wayside to an onboard device or vice versa. These actors are e.g., the Train Operation Company, the Train Constructing Company, a Content Provider, etc. This requires a communication module on each train and at the wayside. These modules interact with each other over heterogeneous wireless links. This system is referred to as the Train-to-Wayside Communication System (TWCS). While there are already a lot of deployments using a TWCS, the implementation of quality of service, performance enhancing proxies (PEP) and the network mobility functions have not yet been fully integrated in TWCS systems. Therefore, we propose a novel and modular IPv6-enabled TWCS architecture in this article. It jointly tackles these functions and considers their mutual dependencies and relationships. DiffServ is used to differentiate between service classes and priorities. Virtual local area networks are used to differentiate between different service level agreements. In the PEP, we propose to use a distributed TCP accelerator to optimize bandwidth usage. Concerning network mobility, we propose to use the SCTP protocol (with Dynamic Address Reconfiguration and PR-SCTP extensions) to create a tunnel per wireless link, in order to support the reliable transmission of data between the accelerators. We have analyzed different design choices, pinpointed the main implementation challenges and identified candidate solutions for the different modules in the TWCS system. As such, we present an elaborated framework that can be used for prototyping a fully featured TWCS

    IOStack: Software-Defined Object Storage

    Get PDF
    The complexity and scale of today’s cloud storage systems is growing fast. In response to these challenges, Software- Defined Storage (SDS) has recently become a prime candidate to simplify storage management in the cloud. This article presents IOStack: The first SDS architecture for object stores (OpenStack Swift). At the control plane, the provisioning of SDS services to tenants is made according to a set of policies managed via a high-level DSL. Policies may target storage automation and/or specific SLA objectives. At the data plane, policies define the enforcement of SDS services, namely filters, on a tenant’s requests. Moreover, IOStack is a framework to build a variety of filters, ranging from general-purpose computations close to the data to specialized data management mechanisms. Our experiments illustrate that IOStack enables easy and effective policy-based provisioning, which can significantly improve the operation of a multi-tenant object store.This work has been funded by the European Union through project H2020 “IOStack: Software-Defined Storage for Big Data” (644182) and by the Spanish Ministry of Science and Innovation through project “Servicios Cloud y Redes Comunitarias” (TIN-2013-47245-C2-2-R).Peer ReviewedPostprint (author's final draft

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    Novel applications and contexts for the cognitive packet network

    Get PDF
    Autonomic communication, which is the development of self-configuring, self-adapting, self-optimising and self-healing communication systems, has gained much attention in the network research community. This can be explained by the increasing demand for more sophisticated networking technologies with physical realities that possess computation capabilities and can operate successfully with minimum human intervention. Such systems are driving innovative applications and services that improve the quality of life of citizens both socially and economically. Furthermore, autonomic communication, because of its decentralised approach to communication, is also being explored by the research community as an alternative to centralised control infrastructures for efficient management of large networks. This thesis studies one of the successful contributions in the autonomic communication research, the Cognitive Packet Network (CPN). CPN is a highly scalable adaptive routing protocol that allows for decentralised control in communication. Consequently, CPN has achieved significant successes, and because of the direction of research, we expect it to continue to find relevance. To investigate this hypothesis, we research new applications and contexts for CPN. This thesis first studies Information-Centric Networking (ICN), a future Internet architecture proposal. ICN adopts a data-centric approach such that contents are directly addressable at the network level and in-network caching is easily supported. An optimal caching strategy for an information-centric network is first analysed, and approximate solutions are developed and evaluated. Furthermore, a CPN inspired forwarding strategy for directing requests in such a way that exploits the in-network caching capability of ICN is proposed. The proposed strategy is evaluated via discrete event simulations and shown to be more effective in its search for local cache hits compared to the conventional methods. Finally, CPN is proposed to implement the routing system of an Emergency Cyber-Physical System for guiding evacuees in confined spaces in emergency situations. By exploiting CPN’s QoS capabilities, different paths are assigned to evacuees based on their ongoing health conditions using well-defined path metrics. The proposed system is evaluated via discrete-event simulations and shown to improve survival chances compared to a static system that treats evacuees in the same way.Open Acces
    • …
    corecore