584 research outputs found

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    5GAuRA. D3.3: RAN Analytics Mechanisms and Performance Benchmarking of Video, Time Critical, and Social Applications

    Get PDF
    5GAuRA deliverable D3.3.This is the final deliverable of Work Package 3 (WP3) of the 5GAuRA project, providing a report on the project’s developments on the topics of Radio Access Network (RAN) analytics and application performance benchmarking. The focus of this deliverable is to extend and deepen the methods and results provided in the 5GAuRA deliverable D3.2 in the context of specific use scenarios of video, time critical, and social applications. In this respect, four major topics of WP3 of 5GAuRA – namely edge-cloud enhanced RAN architecture, machine learning assisted Random Access Channel (RACH) approach, Multi-access Edge Computing (MEC) content caching, and active queue management – are put forward. Specifically, this document provides a detailed discussion on the service level agreement between tenant and service provider in the context of network slicing in Fifth Generation (5G) communication networks. Network slicing is considered as a key enabler to 5G communication system. Legacy telecommunication networks have been providing various services to all kinds of customers through a single network infrastructure. In contrast, by deploying network slicing, operators are now able to partition one network into individual slices, each with its own configuration and Quality of Service (QoS) requirements. There are many applications across industry that open new business opportunities with new business models. Every application instance requires an independent slice with its own network functions and features, whereby every single slice needs an individual Service Level Agreement (SLA). In D3.3, we propose a comprehensive end-to-end structure of SLA between the tenant and the service provider of sliced 5G network, which balances the interests of both sides. The proposed SLA defines reliability, availability, and performance of delivered telecommunication services in order to ensure that right information is delivered to the right destination at right time, safely and securely. We also discuss the metrics of slicebased network SLA such as throughput, penalty, cost, revenue, profit, and QoS related metrics, which are, in the view of 5GAuRA, critical features of the agreement.Peer ReviewedPostprint (published version

    The role of telecommunication companies in Internet of things

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementInternet of Things is pervading the enterprise and consumer worlds. This technological concept is leading towards pervasive connectivity and encompasses everything connected to the Internet, being used for defining objects that ‘talk’ with one another. As stated by many reports, it is expected to generate a huge amount of added value through applications and the resulting services. Telecommunication companies with their central role, and their well established ability to connect millions of devices, are in a distinctive situation brought by the opportunity of new revenue streams and new challenges resulting from this revolution of connectivity. Their share of the added value market that is generated by the IoT is going to be dependent on the role they are going to play in the value chain. The purpose of this work is to investigate the impact Internet of Things will have on the telecommunications industry and to identify and analyse the possible directions for telecommunication companies as they take their role in IoT. In addition the IoT value chain is examined, possible business models for telecommunication companies in IoT are identified, and technology and business related challanges are elaborated. Furthermore in this work, a case study on Makedonski Telekom AD is presented. Telecommunication companies, being in the process of planning and/or implementing IoT have several business models to consider. The ones that will position themselves highly on the value chain, will have to play smart in order not to focus too heavily on industry specific solutions and balance in adding highly differentiated vertical offers where feasible on one hand, and facilitate third‐party vertical solutions where differentiation is more difficult and the investment is too great on the other, so they do not underplay their hand in the connectivity and life cycle management layer

    Towards efficient support for massive Internet of Things over cellular networks

    Get PDF
    The usage of Internet of Things (IoT) devices over cellular networks is seeing tremendous growth in recent years, and that growth in only expected to increase in the near future. While existing 4G and 5G cellular networks offer several desirable features for this type of applications, their design has historically focused on accommodating traditional mobile devices (e.g. smartphones). As IoT devices have very different characteristics and use cases, they create a range of problems to current networks which often struggle to accommodate them at scale. Although newer cellular network technologies, such as Narrowband-IoT (NB-IoT), were designed to focus on the IoT characteristics, they were extensively based on 4G and 5G networks to preserve interoperability, and decrease their deployment cost. As such, several inefficiencies of 4G/5G were also carried over to the newer technologies. This thesis focuses on identifying the core issues that hinder the large scale deployment of IoT over cellular networks, and proposes novel protocols to largely alleviate them. We find that the most significant challenges arise mainly in three distinct areas: connection establishment, network resource utilisation and device energy efficiency. Specifically, we make the following contributions. First, we focus on the connection establishment process and argue that the current procedures, when used by IoT devices, result in increased numbers of collisions, network outages and a signalling overhead that is disproportionate to the size of the data transmitted, and the connection duration of IoT devices. Therefore, we propose two mechanisms to alleviate these inefficiencies. Our first mechanism, named ASPIS, focuses on both the number of collisions and the signalling overhead simultaneously, and provides enhancements to increase the number of successful IoT connections, without disrupting existing background traffic. Our second mechanism focuses specifically on the collisions at the connection establishment process, and used a novel approach with Reinforcement Learning, to decrease their number and allow a larger number of IoT devices to access the network with fewer attempts. Second, we propose a new multicasting mechanism to reduce network resource utilisation in NB-IoT networks, by delivering common content (e.g. firmware updates) to multiple similar devices simultaneously. Notably, our mechanism is both more efficient during multicast data transmission, but also frees up resources that would otherwise be perpetually reserved for multicast signalling under the existing scheme. Finally, we focus on energy efficiency and propose novel protocols that are designed for the unique usage characteristics of NB-IoT devices, in order to reduce the device power consumption. Towards this end, we perform a detailed energy consumption analysis, which we use as a basis to develop an energy consumption model for realistic energy consumption assessment. We then take the insights from our analysis, and propose optimisations to significantly reduce the energy consumption of IoT devices, and assess their performance
    corecore