10,837 research outputs found

    Cornea organoids from human induced pluripotent stem cells.

    Get PDF
    The cornea is the transparent outermost surface of the eye, consisting of a stratified epithelium, a collagenous stroma and an innermost single-cell layered endothelium and providing 2/3 of the refractive power of the eye. Multiple diseases of the cornea arise from genetic defects where the ultimate phenotype can be influenced by cross talk between the cell types and the extracellular matrix. Cell culture modeling of diseases can benefit from cornea organoids that include multiple corneal cell types and extracellular matrices. Here we present human iPS cell-derived organoids through sequential rounds of differentiation programs. These organoids share features of the developing cornea, harboring three distinct cell types with expression of key epithelial, stromal and endothelial cell markers. Cornea organoid cultures provide a powerful 3D model system for investigating corneal developmental processes and their disruptions in diseased conditions

    MEF2C Enhances Dopaminergic Neuron Differentiation of Human Embryonic Stem Cells in a Parkinsonian Rat Model

    Get PDF
    Human embryonic stem cells (hESCs) can potentially differentiate into any cell type, including dopaminergic neurons to treat Parkinson's disease (PD), but hyperproliferation and tumor formation must be avoided. Accordingly, we use myocyte enhancer factor 2C (MEF2C) as a neurogenic and anti-apoptotic transcription factor to generate neurons from hESC-derived neural stem/progenitor cells (NPCs), thus avoiding hyperproliferation. Here, we report that forced expression of constitutively active MEF2C (MEF2CA) generates significantly greater numbers of neurons with dopaminergic properties in vitro. Conversely, RNAi knockdown of MEF2C in NPCs decreases neuronal differentiation and dendritic length. When we inject MEF2CA-programmed NPCs into 6-hydroxydopamine—lesioned Parkinsonian rats in vivo, the transplanted cells survive well, differentiate into tyrosine hydroxylase-positive neurons, and improve behavioral deficits to a significantly greater degree than non-programmed cells. The enriched generation of dopaminergic neuronal lineages from hESCs by forced expression of MEF2CA in the proper context may prove valuable in cell-based therapy for CNS disorders such as PD

    Pluripotency, differentiation, and reprogramming: A gene expression dynamics model with epigenetic feedback regulation

    Full text link
    Characterization of pluripotent states, in which cells can both self-renew and differentiate, and the irreversible loss of pluripotency are important research areas in developmental biology. In particular, an understanding of these processes is essential to the reprogramming of cells for biomedical applications, i.e., the experimental recovery of pluripotency in differentiated cells. Based on recent advances in dynamical-systems theory for gene expression, we propose a gene-regulatory-network model consisting of several pluripotent and differentiation genes. Our results show that cellular-state transition to differentiated cell types occurs as the number of cells increases, beginning with the pluripotent state and oscillatory expression of pluripotent genes. Cell-cell signaling mediates the differentiation process with robustness to noise, while epigenetic modifications affecting gene expression dynamics fix the cellular state. These modifications ensure the cellular state to be protected against external perturbation, but they also work as an epigenetic barrier to recovery of pluripotency. We show that overexpression of several genes leads to the reprogramming of cells, consistent with the methods for establishing induced pluripotent stem cells. Our model, which involves the inter-relationship between gene expression dynamics and epigenetic modifications, improves our basic understanding of cell differentiation and reprogramming

    The Many Hats of Sonic Hedgehog Signaling in Nervous System Development and Disease.

    Get PDF
    Sonic hedgehog (Shh) signaling occurs concurrently with the many processes that constitute nervous system development. Although Shh is mostly known for its proliferative and morphogenic action through its effects on neural stem cells and progenitors, it also contributes to neuronal differentiation, axonal pathfinding and synapse formation and function. To participate in these diverse events, Shh signaling manifests differently depending on the maturational state of the responsive cell, on the other signaling pathways regulating neural cell function and the environmental cues that surround target cells. Shh signaling is particularly dynamic in the nervous system, ranging from canonical transcription-dependent, to non-canonical and localized to axonal growth cones. Here, we review the variety of Shh functions in the developing nervous system and their consequences for neurodevelopmental diseases and neural regeneration, with particular emphasis on the signaling mechanisms underlying Shh action
    • …
    corecore